Ongoing margin migration of Ice Stream B, Antarctica

1999 ◽  
Vol 45 (150) ◽  
pp. 361-369 ◽  
Author(s):  
K.A Echelmeyer ◽  
WD Harrison
Keyword(s):  
1986 ◽  
Vol 8 ◽  
pp. 168-170 ◽  
Author(s):  
P.L. Vornberger ◽  
I.M. Whillans

Aerial photographs have been obtained of Ice Stream B, one of the active ice streams draining the West Antarctic Ice Sheet. A sketch map made from these photographs shows two tributaries. The margin of the active ice is marked by curved crevasses and intense crevassing occurs just inward of them. Transverse crevasses dominate the center of the ice streams and diagonal types appear at the lower end. A “suture zone” originates at the tributary convergence and longitudinal surface ridges occur at the downglacier end. The causes of these surface features are discussed and the relative importance of four stresses in resisting the driving stress is assessed. We conclude that basal drag may be important, longitudinal compression is probably important at the lower end, and longitudinal tension is probably most important near the head of the ice stream. Side drag leads to shearing at the margins, but does not restrain much of the ice stream.


1993 ◽  
Vol 39 (133) ◽  
pp. 562-572 ◽  
Author(s):  
I. M. Whillans ◽  
M. Jackson ◽  
Y-H. Tseng

AbstractRepeat aerial photography is used to obtain closely spaced measurements of velocity and elevation over a complete transect of Ice Stream tributary B2, including the shear margins, the fast ice of the ice stream and several unusual features, as well as the UpB camp. Persistent features, mainly crevasses, are tracked to provide 1541 values of velocity and 1933 values of elevation. These are used to describe ice flow in the ice stream. Within the ice stream, the dominant velocity gradient is lateral shear. Crevasse patterns are studied in relation to measured velocity gradients. Crevasses intersect one another at acute angles, indicating that their origin is deeper than the depth to which crevasses penetrate. One feature within the ice stream seems to be a raft of stiff ice. Others are crevasse trains. Also, there are spreading ridges, perhaps due to upwelling ice. There is no evidence of large sticky spots within the studied transect, i.e. no steep surface slopes with associated surface stretching just up-glacier and surface compression down-glacier.


1998 ◽  
Vol 44 (146) ◽  
pp. 149-156 ◽  
Author(s):  
C. R. Bentley ◽  
N. Lord ◽  
C. Liu

AbstractDigital airborne radar data were collected during the 1987-88 Antarctic field season in nine gridded blocks covering the downstream portions of Ice Stream B (6km spacing) and Ice Stream C (11 km spacing), together with a portion of ridge BC between them. An automated processing procedure was used for picking onset times of the reflected radar pulses, converting travel times to distances, interpolating missing data, converting pressure transducer readings, correcting navigational drift, performing crossover analysis, and zeroing rémanent crossover errors. Interpolation between flight-lines was carried out using the minimum curvature method.Maps of ice thickness (estimated accuracy 20 m) and basal-reflection strength (estimated accuracy 1 dB) were produced. The ice-thickness map confirms the characteristics of previous reconnaissance maps and reveals no new features. The reflection-strength map shows pronounced contrasts between the ice streams and ridge BC and between the two ice streams themselves. We interpret the reflection strengths to mean that the bed of Ice Stream C, as well as that of Ice Stream B, is unfrozen, that the bed of ridge BC is frozen and that the boundary between the frozen bed of ridge BC and the unfrozen bed of Ice Stream C lies precisely below the former shear margin of the ice stream.


1994 ◽  
Vol 20 ◽  
pp. 183-186 ◽  
Author(s):  
S. Anandakrishnan ◽  
R. B. Alley

Microearthquakes at the base of slow-moving Ice Stream C occur many times more frequently than at the base of fast-moving Ice Stream B. We suggest that the microearthquake source sites are so-called “sticky spots”, defined as limited zones of stronger Subglacial material interspersed within a weaker matrix. The fault-plane area of the microearthquakes (O(102m2)) is therefore a measure of the size of the sticky spots. The spatial density of the microearthquakes (O(10 km-2)) is a measure of the distribution of sticky spots.The average stress drop associated with these microearthquakes is consistent with an ice-stream bed model of weak subglacial till interspersed with stronger zones that support much or all of the basal shear stress. We infer a weak inter-sticky-spot material by the large distances (O(103m)), relative to fault radius, to which the microearthquake stress change is transmitted.


1988 ◽  
Vol 11 ◽  
pp. 199 ◽  
Author(s):  
D. D. Blankenship ◽  
C. R. Bentley

Both in the interior of West Antarctica and on Ross Ice Shelf the ice column is dominated by ice with a distinct preferred c-axis orientation. An understanding of the dynamics of the West Antarctic ice sheet requires that we know the gross crystalline structure that characterizes each of its glaciological regimes (i.e. ice sheet, ice stream, and ice shelf). An important question is whether the strong fabric of the interior ice is preserved when this ice passes through the zone in which it is accelerated from sheet flow to stream flow, a zone that must be marked by strong longitudinal extension. Using generalized inverse techniques we have inverted seismic-reflection travel times observed at Upstream Β camp (on Ice Stream B) to obtain the gross crystalline structure of the ice column at that location. We find that the strong fabrics of the interior are indeed destroyed; only a slight preferred orientation remains. The evidence at Upstream Β camp is particularly strong because shear waves of both polarizations, which are particularly sensitive indicators of anisotropy, were analyzed as well as P-waves.


1988 ◽  
Vol 11 ◽  
pp. 210 ◽  
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams. Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


1994 ◽  
Vol 20 ◽  
pp. 129-136
Author(s):  
S. Shabtaie ◽  
C.R. Bentley

Electrical resistivity sounding using the four-electrode Schlumberger array was carried out at station UpB on Ice Stream B to an electrode spacing of 3 km. Measured apparent resistivities were compared with theoretical models based on known relations between resistivity, density and temperature. Densities were measured in a pit and two coreholes; temperatures were measured in the upper 200 m of the ice stream and have been calculated for greater depth from an ice-stream temperature model. The resistivity, after correction for density and temperature, increases with depth down to 650-700 m. Below that is a marked decrease over the next 100m or so that we correlate with the Holocene-Wisconsin transition zone. Still deeper there is an orders-of-magnitude increase to a value, in the basal ice, of 30 MΩ m or more. This extremely high resistivity is similar to that reported for temperate glaciers and deep in the Antarctic ice sheet elsewhere. We attribute it to the destruction, by extensive metamorphism, of impurity-conduction paths at two-grain boundaries


1993 ◽  
Vol 39 (133) ◽  
pp. 463-470 ◽  
Author(s):  
W. D. Harrison ◽  
K. A. Echelmeyer ◽  
H. Engelhardt

AbstractThe speed of Ice Stream B, Antarctica, was measured twice a day-over a 1 month study period, and found to be steady at about the ±3½% level, the sensitivity of the measurements. The vertical strain was measured at three sites over a 1 year period at 1 h intervals with sensitivities of 2 or 0.2 ppm. The strain rate varied on all time-scales. Events of high strain rate were observed, but never at more than one site at a time. They can probably be understood in terms of local modification of the strain field associated with crevassing. Diurnal variation in strain rate was observed at one and possibly two sites during two summers. The seismicity was measured at all three sites, and diurnal and seasonal variations were prominent at all, the seismicity being much more intense in winter. Several possible causes of the diurnal variations in strain and seismicity are considered: thermal and atmospheric effects, and the effects of tides in the Ross Sea.


1997 ◽  
Vol 43 (144) ◽  
pp. 231-237 ◽  
Author(s):  
I. M. Whillans ◽  
C. J. van der Veen

AbstractThe partitioning of resistive force between the bed and sides of Ice Stream B, Antarctica, is obtained for three large areas that have been measured using repeat aerial photogrammetry. Problems associated with data errors and local variations in ice strength and velocity are reduced by considering the areally averaged budget of forces for each photo block. Results indicate that the bed under Ice Stream B must be very weak and unable to provide much resistance. Mechanical control on this ice stream emanates almost entirely from the lateral margins.


Sign in / Sign up

Export Citation Format

Share Document