scholarly journals Tributaries to West Antarctic ice streams: characteristics deduced from numerical modelling of ice flow

2000 ◽  
Vol 31 ◽  
pp. 184-190 ◽  
Author(s):  
Christina L. Hulbe ◽  
Ian R. Joughin ◽  
David L. Morse ◽  
Robert A. Bindschadler

AbstractA network of relatively fast-flowing tributaries in the catchment basins of the West Antarctic ice streams transport ice from the inland reservoir to the heads of the ice streams. Branches of the network follow valleys in basal topography but not all valleys contain tributaries. We investigate the circumstances favoring tributary flow upstream of Ice Streams D and E, using a combination of observation and numerical modelling. No consistent pattern emerges. The transition from tributary to ice-stream flow occurs smoothly along the main tributary feeding into the onset of Ice Stream D, with ice thickness being relatively more important upstream, and sliding being relatively more important downstream. Elsewhere, the downstream pattern of flow is more complicated, with local increases and decreases in the contribution of sliding to ice speed. Those changes may be due to variations in basal water storage, subglacial geologic properties or a combination of the two.

1990 ◽  
Vol 14 ◽  
pp. 273-277 ◽  
Author(s):  
S.N. Stephenson ◽  
R.A. Bindschadler

Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.


1990 ◽  
Vol 14 ◽  
pp. 273-277 ◽  
Author(s):  
S.N. Stephenson ◽  
R.A. Bindschadler

Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.


1988 ◽  
Vol 11 ◽  
pp. 210 ◽  
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams. Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


1988 ◽  
Vol 11 ◽  
pp. 126-136 ◽  
Author(s):  
S. Shabtaie ◽  
C. R. Bentley

Extensive radar ice-thickness sounding of ice streams A, B, and C, and the ridges between them, has been carried out. Closely spaced flight lines, as well as ties to numerous ground stations, have enabled us to compile a detailed ice-thickness map of the area. The map reveals a highly complex pattern of ice-thickness variations, which, because they are much larger than the surface relief, largely reflect the subglacial topography. Several cross-sectional profiles across the ice streams and ridges are shown, and a new configuration for Ice Stream A is presented. Ice Stream A is connected to Reedy Glacier and Horlick Ice Stream by subglacial troughs that converge down-stream. The single trough continues, at a depth of more than 1000 m below sea-level, beneath the entire length of the ice stream and adjacent part of Ross Ice Shelf. Ridge AB (part of which may be a remanent ice stream) overlies a deep bed with pronounced troughs at its headward end; the bed shoals rapidly down-stream to a height more than 500 m above the beds of the adjacent ice streams. Ice stream B1 overlies a subglacial trough that is deep inland and also shoals markedly toward the grounding line. Near its head. Ice Stream B2 is as much as 1000 m thinner than Ice Stream Bl, but then remains much more nearly constant in thickness along its length. Ridge BC is characterized by a smoother bed and less variation in bed depth than ridge AB. Ice Stream C, which is inactive, is particularly marked by uncorrelated maxima and minima in surface and bed topography. There are no distinct topographical steps that demarcate the transition from sheet to streaming flow at the head of the ice streams, and the ice streams are placed asymmetrically in some places with respect to their subglacial troughs. This may reflect a relative impermanence or transient behavior of the “Ross” ice streams.


1988 ◽  
Vol 11 ◽  
pp. 210-210
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams.Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


1985 ◽  
Vol 22 (12) ◽  
pp. 1864-1871 ◽  
Author(s):  
Peter Clark

Ice-flow indicators in the Lake Harbour region of northern Hudson Strait define two flow directions affecting this area during the late Wisconsinan glaciation. A pronounced southward flow direction indicated by medium- and large-scale erosional and depositional features represents ice flow from an ice dome centered to the north, perhaps Foxe Basin and (or) Amadjuak Lake. Carbonate-rich till and striations represent eastward–southeastward ice flow down the axis of Hudson Strait. Convergence of ice-sheet flow with a rapidly moving ice stream has been observed and modelled for West Antarctic ice streams and involves sharp bending of flow lines at the point of convergence. A similar scenario is proposed for the Lake Harbour region to explain the two contrasting ice-flow patterns. Impingement of an ice stream in Hudson Strait onto the southern coast of Baffin Island suggests the influence of northerly flowing ice, perhaps from the Ungava plateau.Radiocarbon dates on marine shells and archeological samples are used to reconstruct the postglacial emergence of the Lake Harbour region. The marine limit (90 m aht) and deglaciation are dated by extrapolation at ca. 8300 years BP. Postglacial emergence is characterized by an initial uplift rate of 4.4 m/100 years, which decreased to 0.2 m/100 years over the last 3900 years. The initial rate (4.4 m/100 years) is nearly 50% lower than rates calculated elsewhere in the Hudson Strait region and is interpreted to reflect the influence of an ice load centered over Amadjuak Lake directly north of the Lake Harbour region.


2011 ◽  
Vol 52 (58) ◽  
pp. 18-22 ◽  
Author(s):  
Olga V. Sergienko ◽  
Christina L. Hulbe

AbstarctLocations of subglacial lakes discovered under fast-moving West Antarctic ice streams tend to be associated with topographic features of the subglacial bed or with areas that have strong variations in basal conditions. Inversion of ice-stream surface velocity indicates that basal conditions under ice streams can be highly variable and that there can be widespread regions where basal traction is high. To seek an explanation for why lakes appear to be sited near areas with high basal traction, we use numerical models to simulate ice-stream dynamics, thermodynamics and subglacial water flow. We demonstrate that the ice flow over high basal traction areas produces favourable conditions for the ponding of meltwater. Energy dissipation associated with ice sliding over a region with high basal traction constitutes a water source supplying a lake, and ice-thickness perturbations induced by ice flow over variable traction create local minima in hydraulic potential. Variations in thermodynamic processes caused by such ice flow could be responsible for limiting the horizontal extent of the subglacial lakes.


1996 ◽  
Vol 101 (B3) ◽  
pp. 5499-5504 ◽  
Author(s):  
Robert W. Jacobel ◽  
Theodore A. Scambos ◽  
Charles F. Raymond ◽  
Anthony M. Gades

2004 ◽  
Vol 39 ◽  
pp. 85-92 ◽  
Author(s):  
Hermann Engelhardt

AbstractThe temperature–depth profiles measured in 22 boreholes drilled on the West Antarctic ice sheet exhibit two distinctly different thermal states of its basal ice. The warm state shows on Siple Dome and on Whillans Ice Stream. A relatively colder state, found at the Unicorn, Kamb Ice Stream (former Ice Stream C) and Bindschadler Ice Stream (former Ice Stream D), has basal temperature gradients greater than 50 K km–1. A large block of cold ice stranded and frozen to the bed at the Unicorn and simultaneously much warmer ice existing only a few kilometers across the Dragon shear margin in fast-moving Alley Ice Stream (former Ice Stream B2) poses a paradox. The relatively cold ice at the Unicorn must have come from a source different from the present Whillans Ice Stream catchment area. It is hypothesized that the Unicorn paradox was created by a super-surge. Also, the stagnant Siple Ice Stream, many relict shear margins, cold patches of ice at the Crary Ice Rise, ice rafts embedded in the Ross Ice Shelf, all point to a major event triggered either by an internal instability or by a subareal volcanic eruption. Most of these features appeared to have been formed about 500 years ago. Subsequent freeze-on of a 10–20m thick basal layer of debris-laden ice and water loss caused a slowdown of ice streams and, in the case of Kamb Ice Stream, an almost complete stoppage.


2002 ◽  
Vol 48 (162) ◽  
pp. 407-416 ◽  
Author(s):  
Christian Schoof

AbstractClassical sliding theories consider ice sliding over obstacles which are much shorter than the thickness of overlying ice. Here we present a theory which considers “form drag” generated under ice streams by large obstacles such as subglacial bedforms, which may have lengths comparable to ice thickness. We also investigate how perturbations at the surface of an ice stream can be generated by such bedforms, and develop a mathematical framework for separating the effects of such local (kilometre-scale) variations in ice flow from the bulk flow of the ice stream.


Sign in / Sign up

Export Citation Format

Share Document