scholarly journals Retreat of mountain glaciers of northern Eurasia since the Little Ice Age maximum

2000 ◽  
Vol 31 ◽  
pp. 26-30 ◽  
Author(s):  
Olga N. Solomina

AbstractAnalysis of aerial photographs of about 1000 glaciers located in the mountain ranges of the former Soviet Union –Caucasus, Polar Urals, Pamir-Alay, Tien Shan, Altay, Kodar, Cherskiy range, Suntar-Khayata, Koryakskoye Nagorye, Kamchatka–shows that variations in the magnitude of glacier retreat since the Little Ice Age maximum are significant and probably connected to climatic continentality. On average, the scale of glacier shrinkage is much smaller in continental Siberia than in central Asia and along the Pacific margins.

2018 ◽  
Vol 322 (3) ◽  
pp. 205-214
Author(s):  
V.S. Baygusheva ◽  
I.V. Foronova ◽  
S.V. Semenova

The article contains a biography of the famous Russian paleontologist V.E. Garutt (1917–2002), the oldest research worker of the Zoological institute of Russian Academy of Sciences, who studied the Pleistocene elephants of Northern Eurasia. He published more than 70 scientific papers on the origin and evolution of elephants of mammoth line, the morphology, changeability and features of the development of ancient proboscides. V.E. Garutt suggested two subfamilies Primelephantinae and Loxodontinae. He is the author of several taxa of fossil elephants of the generic, specific and subspecific levels. On his initiative, the skeleton of the Taimyr mammoth was adopted as the neotype of the woolly mammoth Mammuthus primigenius. He actively defended the independence of the genus Archidiskodon. A number of famous and important for the science paleontological specimens (skulls and skeletons of southern elephants, trogontherine and woolly mammoths, woolly rhinoceroses and elasmotherium) were restored and mounted by V.E. Garutt. They adorn a number of museums and institutes in Russia (St. Petersburg, Stavropol, Pyatigorsk, Azov, Rostov-on-Don) and abroad (Tbilisi, Vilnius, Edersleben, Sangerhausen). In addition, V.E. Garutt was an active popularizer of paleontological science. He collected a scientific archive on the remains of elephants from many regions of the former Soviet Union and some countries of Western Europe, which is now stored in the Azov museum-reserve (Azov). Several grateful pupils began their way in paleontology under the leader ship of V.E. Garutt. And they continue active work nowadays.


2021 ◽  
Author(s):  
Bethan Davies ◽  
Jacob Bendle ◽  
Robert McNabb ◽  
Jonathan Carrivick ◽  
Christopher McNeil ◽  
...  

<p>The Alaskan region (comprising glaciers in Alaska, British Columbia and Yukon) contains the third largest ice volume outside of the Greenland and Antarctic ice sheets, and contributes more to global sea level rise than any other glacierised region defined by the Randolph Glacier Inventory. However, ice loss in this area is not linear, but in part controlled by glacier hypsometry as valley and outlet glaciers are at risk of becoming detached from their accumulation areas during thinning. Plateau icefields, such as Juneau Icefield in Alaska, are very sensitive to changes in Equilibrium Line Altitude (ELA) as this can result in rapidly shrinking accumulation areas. Here, we present detailed geomorphological mapping around Juneau Icefield and use this data to reconstruct the icefield during the “Little Ice Age”. We use topographic maps, archival aerial photographs, high-resolution satellite imagery and digital elevation models to map glacier lake and glacier area and volume change from the Little Ice Age to the present day (1770, 1948, 1979, 1990, 2005, 2015 and 2019 AD). Structural glaciological mapping (1979 and 2019) highlights structural and topographic controls on non-linear glacier recession.  Our data shows pronounced glacier thinning and recession in response to widespread detachment of outlet glaciers from their plateau accumulation areas. Glacier detachments became common after 2005, and occurred with increasing frequency since then. Total summed rates of area change increased eightfold from 1770-1948 (-6.14 km<sup>2</sup> a<sup>-1</sup>) to 2015-2019 (-45.23 km<sup>2</sup> a<sup>-1</sup>). Total rates of recession were consistent from 1770 to 1990 AD, and grew increasingly rapid after 2005, in line with regional warming.</p>


2003 ◽  
Vol 49 (164) ◽  
pp. 117-124 ◽  
Author(s):  
Liu Shiyin ◽  
Sun Wenxin ◽  
Shen Yongping ◽  
Li Gang

AbstractBased on aerial photographs, topographical maps and the Landsat-5 image data, we have analyzed fluctuations of glaciers in the western Qilian Shan, north-west China, from the Little Ice Age (LIA) to 1990. The areas and volumes of glaciers in the whole considered region decreased 15% and 18%, respectively, from the LIA maximum to 1956. This trend of glacier shrinkage continued and accelerated between 1956 and 1990. These latest decreases in area and volume were about 10% in 34 years. The recent shrinkage may be due either to a combination of higher temperatures and lower precipitation during the period 1956–66, or to continuous warming in the high glacierized mountains from 1956 to 1990. As a consequence, glacier runoff from ice wastage between 1956 and 1990 has increased river runoff by 6.2 km3 in the four river basins under consideration. Besides, the equilibrium-line altitude (ELA) rise estimated from the mean terminus retreat of small glaciers <1 km long is 46 m, which corresponds to a 0.3°C increase of mean temperatures in warm seasons from the LIA to the 1950s.


1992 ◽  
Vol 16 ◽  
pp. 11-16 ◽  
Author(s):  
Liu Chaohai ◽  
Han Tianding

Since the Little Ice Age, most glaciers in the Tien Shan mountains have been retreating. Owing to an increase in precipitation in most parts of the mountains during the late 1950s to early 1970s, the percentage of receding glaciers and the speed of retreat have tended to decrease in the 1970s. However, the general trend of continuous glacier retreat remains unchanged, in part because the summer air temperature shows no tendency to decrease.In the Tien Shan mountains, as the degree of climatic continentality increases the mass balance becomes more dependent on summer temperature, and accumulation and ablation tend to be lower. Therefore, the responses of glaciers to climatic fluctuations in more continental areas are not synchronous with those in less continental areas, and the amplitude of the glacier variations becomes smaller.


1992 ◽  
Vol 16 ◽  
pp. 207-211
Author(s):  
Xie Zichu

In the past decade the interest of many scientists worldwide has been attracted to the central Asian area of China. A number of gaps in scientific knowledge have been closed, and many significant discoveries have been made.The most important achievement is the ice-core research by the Sino-American Joint Expedition to the Dunde Ice Cap, Qilian mountains, that established a record of ten thousand years of climatic and environmental change. In addition, in cooperation with scientists from Japan, Switzerland and the Soviet Union, studies have been carried out focusing on glacier mass balance, heat balance, the mechanism and formation of glacial runoff, and high mountain climates. This work has been done in the Tien Shan, west Kunlun, Tanggula, Nyaingentanglha and Gongga mountains.In addition, through joint efforts of scientists from China, Nepal and Canada, important advances have also been made in studies of glacier lake outburst floods and debris flows in the Karakoram and the Himalayas, and in mountainous areas in southeastern Tibet.The glaciers in central Asia will continue to be an important research area for glaciologists from all over the world in the coming decade.


2020 ◽  
Vol 13 (12) ◽  
pp. 806-811
Author(s):  
James F. Bramante ◽  
Murray R. Ford ◽  
Paul S. Kench ◽  
Andrew D. Ashton ◽  
Michael R. Toomey ◽  
...  

2014 ◽  
Vol 55 (66) ◽  
pp. 167-176 ◽  
Author(s):  
E.Yu. Osipov ◽  
O.P. Osipova

AbstractContemporary glaciers of southeast Siberia are located on three high-mountain ridges (east Sayan, Baikalsky and Kodar). In this study, we present an updated glacier inventory based on high- to middle-resolution satellite imagery and field investigations. The inventory includes 51 glaciers with a total area of - 15 km2. Areas of individual glaciers vary from 0.06 to 1.33 km2, lengths from 130 to 2010 m and elevations from 1796 to 3490 m. The recent ice maximum extents (Little Ice Age) have been delineated from terminal moraines. On average, debris-free surface area shrunk by 59% between 1850 and 2006/11 (0.37% a–1), by 44% between 1850 and 2001/02 (0.29% a–1) and by 27% between 2001/02 and 2006/11 (3.39% a–1). The Kodar glaciers have experienced the largest area shrinkage, while the area loss on Baikalsky ridge was more moderate. Glacier changes are mainly related to regional summer temperature increase (by 1.7-2.6C from 1970 to 2010). There are some differences in glacier response due to different spatial patterns of snow accumulation, local topography (e.g. glacier elevation, slope) and geological activity. The studied glaciers (especially of Kodar ridge) are the most sensitive in Siberia to climate change since the late 20th century.


Sign in / Sign up

Export Citation Format

Share Document