scholarly journals Elemental indicators of natural and anthropogenic aerosol inputs to Law Dome, Antarctica

2004 ◽  
Vol 39 ◽  
pp. 169-174 ◽  
Author(s):  
Paul Vallelonga ◽  
Carlo Barbante ◽  
Giulio Cozzi ◽  
Vania Gaspari ◽  
Jean-Pierre Candelone ◽  
...  

AbstractA selection of elements (Bi, Ca, Cd, Co, Cu, Mn, Na, Sr, U, V, Zn) were measured by high-resolution inductively coupled plasma sector-field mass spectrometry in firn- and ice-core samples from Law Dome, Antarctica, corresponding to the period 4500 BC to AD 1989. Concentrations of rock dust and sea salts were calculated for each sample and then used to determine concentrations of each element originating from crustal and marine aerosol emissions, respectively. Where calculated contributions from crustal and marine aerosol sources failed to account for the total measured concentration of an element, the remainder was apportioned to volcanic and/or anthropogenic sources and defined as an enrichment. On this basis, it was determined that Bi and Cd concentrations in Law Dome ice are overwhelmingly influenced by volcanic emissions (enrichments 150–250x crustal and marine inputs); Co, Cu, Pb and Zn concentrations in Law Dome ice are largely influenced by volcanic emissions (enrichments 16–36x crustal and marine inputs); and Mn, Sr, U and V concentrations in Law Dome ice are minimally influenced by volcanic emissions (enrichments 1.5–4x crustal and marine inputs). During the 20th century, enrichments of Pb and Cu concentrations were observed to be greater than in earlier centuries, consistent with increasing anthropogenic emissions of Pb and Cu in the Southern Hemisphere over that period.

2006 ◽  
Vol 43 ◽  
pp. 154-159 ◽  
Author(s):  
Yuefang Li ◽  
Tandong Yao ◽  
Ninglian Wang ◽  
Zhen Li ◽  
Lide Tian ◽  
...  

AbstractAl, Mn, Rb, Sr, Ba, Cs, Bi and Sb were measured at various depth intervals of a 41.6 m firn/ ice core drilled at an elevation of 7010 m near the top of Muztagh Ata glacier, east Pamirs (38˚17’ N, 75˚06’ E), central Asia. These data, spanning the mid-1950s to 2000, were obtained by analyzing 101 sections using a sector-field double-focusing inductively coupled plasma mass spectrometer (ICP-MS) instrument. This study provides the first time series for these metals from central Asia. Concentrations are 11.7–329 ng mL−1 for Al, 0.33–42.7 ng mL−1 for Mn, 0.42–17.8 ng mL−1 for Sr, 0.04–1.4 ng mL−1 for Rb, 0.18–10.4 ng mL−1 for Ba, 2–167 pg mL−1 for Cs, 2–51 pg mL−1 for Sb and 1–31 pg mL−1 for Bi. Large variations in metal concentrations were found during the study period. Pronounced increases in concentrations were observed for Sb and Bi from the mid-1960s to the beginning of the 1990s, suggesting increased anthropogenic sources of Sb and Bi in central Asia during the same period. However, the decrease of Sb and Bi concentrations during the mid- to late 1990s reflects a reduction in anthropogenic activities in central Asia.


Author(s):  
Georges-Ivo Ekosse ◽  
George Elambo Nkeng ◽  
Nenita Bukalo ◽  
Olaonipekun Oyebanjo

This study assessed the mineralogical and geochemical characteristics of geophagic clays sold in some markets in Cameroon to ascertain their provenance, contamination status and human health risk. To achieve this, 40 samples from 13 markets in Cameroon were purchased and analysed using X-ray diffractometry, X-ray fluorescence and laser ablation inductively coupled plasma mass spectrometry for their mineralogy and geochemistry, respectively. The geophagic clays were dominantly made up of kaolinite and quartz. Their chemistry was dominated by SiO2, Al2O3 and LOI with means of 48.76 wt%, 32.12 wt% and 13.93 wt%, respectively. The major, trace and rare earth elements data showed that these geophagic clays were predominantly derived from felsic rocks. The contamination assessment indicated no enrichment of metals from anthropogenic sources, except for Zn in samples from Acacia, Madagascar and Mfoudi markets. The index of geo-accumulation indicated no contamination to moderate contamination of the clays. The non-carcinogenic index values for Fe, Co, Cr, Cu, Ni, Pb and Zn were generally less than 1, suggesting no non-carcinogenic risk exposure to children and adults consuming the geophagic clays from these metals. The carcinogenic risk index (TCR) for Ni and Cr were above 10−6, which implies that children and adults are vulnerable to minimal carcinogenic health risk. The TCR values from Ni posed the highest risk, especially to children consuming clays from some markets.


2017 ◽  
Vol 29 (4) ◽  
pp. 382-393
Author(s):  
A. Massam ◽  
S.B. Sneed ◽  
G.P. Lee ◽  
R.R. Tuckwell ◽  
R. Mulvaney ◽  
...  

AbstractA model to estimate the annual layer thickness of deposited snowfall at a deep ice core site, compacted by vertical strain with respect to depth, is assessed using ultra-high-resolution laboratory analytical techniques. A recently established technique of high-resolution direct chemical analysis of ice using ultra-violet laser ablation inductively-coupled plasma mass spectrometry (LA ICP-MS) has been applied to ice from the Berkner Island ice core, and compared with results from lower resolution techniques conducted on parallel sections of ice. The results from both techniques have been analysed in order to assess the capability of each technique to recover seasonal cycles from deep Antarctic ice. Results do not agree with the annual layer thickness estimates from the age–depth model for individual samples <1 m long as the model cannot reconstruct the natural variability present in annual accumulation. However, when compared with sections >4 m long, the deviation between the modelled and observational layer thicknesses is minimized to within two standard deviations. This confirms that the model is capable of successfully estimating mean annual layer thicknesses around analysed sections. Furthermore, our results confirm that the LA ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical resolution.


2020 ◽  
Author(s):  
Pascal Bohleber ◽  
Marco Roman ◽  
Carlo Barbante ◽  
Barbara Stenni ◽  
Barbara Delmonte

&lt;p&gt;Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers minimally destructive ice core impurity analysis at micron-scale resolution. This technique is especially suited for exploring closely spaced layers of ice within samples collected at low accumulation sites or in regions of highly compressed and thinned ice. Accordingly, LA-ICP-MS promises invaluable insights in the analysis of a future &amp;#8220;Oldest ice core&amp;#8221; from Antarctica. However, in contrast to ice core melting techniques, taking into account the location of impurities is crucial to avoid misinterpretation of ultra-fine resolution signals obtained from newly emerging laser ablation technologies. Here we present first results from a new LA-ICP-MS setup developed at the University of Venice, based on a customized two-volume cryogenic ablation chamber optimized for fast wash-out times. We apply our method for high-resolution chemical imagining analysis of impurities in samples from intermediate and deep sections of the Talos Dome and EPICA Dome C ice cores. We discuss the localization of both soluble and insoluble impurities within the ice matrix and evaluate the spatial significance of a single profile along the main core axis. With this, we aim at establishing a firm basis for a future deployment of the LA-ICP-MS in an &amp;#8220;Oldest Ice Core&amp;#8221;. Moreover, our work illustrates how LA-ICP-MS may offer new means to study the impurity-microstructure interplay in deep polar ice, thereby promising to advance our understanding of these fundamental processes.&lt;/p&gt;


2013 ◽  
Vol 13 (3) ◽  
pp. 1411-1424 ◽  
Author(s):  
T. Moreno ◽  
T. Kojima ◽  
F. Amato ◽  
F. Lucarelli ◽  
J. de la Rosa ◽  
...  

Abstract. The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS), and hourly Streaker with Particle Induced X-ray Emission (PIXE) samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF) analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10), As-bearing sulphatic aerosol (PM0.1–2.5), metalliferous sodic particulate matter (PM) interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.


1982 ◽  
Vol 36 (3) ◽  
pp. 210-221 ◽  
Author(s):  
R. K. Winge ◽  
V. A. Fassel ◽  
V. J. Peterson ◽  
M. A. Floyd

A thorough knowledge of the spectral emission characteristics of the inductively coupled plasma is a prerequisite for its maximum utilization in atomic emission spectroscopy. Toward this end an Atlas of Spectral Information for Inductively Coupled Plasma, Atomic Emission Spectroscopy has been assembled to provide the analyst with the basic information concerning the analytical capabilities and the potential spectral interferences of the prominent spectral lines of 70 elements. The Atlas contains 232 wavelength scans of 70 elements covering the range of 189 to 517 nm (189 to 597 nm for sodium and the reference blank). The Atlas also contains a listing of 973 prominent lines with estimated detection limits and a detailed collection of coincidence profiles for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitant elements superimposed. This paper contains a survey of the spectral information contained in the Atlas.


Sign in / Sign up

Export Citation Format

Share Document