scholarly journals Glacier variations in the Naimona’nyi region, western Himalaya, in the last three decades

2006 ◽  
Vol 43 ◽  
pp. 385-389 ◽  
Author(s):  
Qinghua Ye ◽  
Tandong Yao ◽  
Shichang Kang ◽  
Feng Chen ◽  
Jinghua Wang

AbstractThis work quantifies glacier variations in the Naimona’nyi area of the western Himalaya by integrating glacier spatial data from ASTER and the Landsat series of satellite imagery at four different times: 1976, 1990, 1999 and 2003. Comparison of the results from individual images with those from the integrated method indicates that the integrated approach provides a better result. Glacier variations were mapped and analyzed; discrepancies between images could be detected and removed from the integrated data using remap tables in Arc/Info grid both graphically and numerically. Our results show that glaciers in the region both retreated and advanced during the last 28 years; however, retreat dominates. The variation of glaciers in the western Himalayan region is dramatic compared with other regions in high Asia. From 1976 to 2003, glacier area decreased from 84.41 km2 to 77.29 km2. Sequential images show that glacier areas shrank by 0.17, 0.19 and 0.77 km2 a−1, on average, during the periods 1976–90, 1990–99 and 1999–2003, respectively, suggesting that glacier retreat has accelerated.

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 255
Author(s):  
Gary Conley ◽  
Nicole Beck ◽  
Catherine Riihimaki ◽  
Krista McDonald ◽  
Michelle Tanner

Use of green stormwater infrastructure (GSI) to mitigate urban runoff impacts has grown substantially in recent decades, but municipalities often lack an integrated approach to prioritize areas for implementation, demonstrate compelling evidence of catchment-scale improvements, and communicate stormwater program effectiveness. We present a method for quantifying runoff reduction benefits associated with distributed GSI that is designed to align with the spatial scale of information required by urban stormwater implementation. The model was driven by a probabilistic representation of rainfall events to estimate annual runoff and reductions associated with distributed GSI for various design storm levels. Raster-based calculations provide estimates on a 30-m grid, preserving unique combinations of drainage factors that drive runoff production, hydrologic storage, and infiltration benefits of GSI. The model showed strong correspondence with aggregated continuous runoff data from a set of urbanized catchments in Salinas, California, USA, over a three-year monitoring period and output sensitivity to the storm drain network inputs. Because the model runs through a web browser and the parameterization is based on readily available spatial data, it is suitable for nonmodeling experts to rapidly update GSI features, compare alternative implementation scenarios, track progress toward urban runoff reduction goals, and demonstrate regulatory compliance.


2021 ◽  
Vol 130 (4) ◽  
Author(s):  
Lavkush Kumar Patel ◽  
Anwesha Sharma ◽  
Parmanand Sharma ◽  
Anushree Singh ◽  
Meloth Thamban

2011 ◽  
Vol 4 (5) ◽  
pp. 6007-6040 ◽  
Author(s):  
D. Key ◽  
J. Stihle ◽  
J.-E. Petit ◽  
C. Bonnet ◽  
L. Depernon ◽  
...  

Abstract. Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace atmospheric nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.


Merging of multiple imaging modalities leads to a single image that acquire high information content. These find useful applications in disease diagnosis and treatment planning. IHS-PCA method is a spatial domain approach for fusion that offersfinestvisibility but demands vast memory and it lacks steering information. We propose an integrated approach that incorporates NSCT combined with PCA utilizing IHS space and histogram matching. The fusion algorithm is applied on MRI with PET image and improved functional property was obtained. The IHS transform is a sharpening technique that converts multispectral image from RGB channels to Intensity Hue and Saturation independent values. Histogram matching is performed with intensity values of the two input images. Pathological details in images can be emphasized in multi-scale and multi-directions by using PCA withNSCT. Fusion rule applied is weighted averaging andprincipal components are used for dimensionality reduction. Inverse NSCT and Inverse IHS are performed so as to obtain the fused image in new RGB space. Visual and subjective investigation is compared with existing methods which demonstrate that our proposed technique gives high structural data content with high spatial and spectral resolution compared withearlier methods.


2011 ◽  
Vol 4 (12) ◽  
pp. 2795-2807 ◽  
Author(s):  
D. Key ◽  
J. Stihle ◽  
J.-E. Petit ◽  
C. Bonnet ◽  
L. Depernon ◽  
...  

Abstract. Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv), as supported by field measurements in an urban park and in the exhaust of on-road vehicles.


2020 ◽  
Vol 12 (6) ◽  
pp. 1029
Author(s):  
Xuzhe Duan ◽  
Qingwu Hu ◽  
Pengcheng Zhao ◽  
Shaohua Wang ◽  
Mingyao Ai

Urban commercial areas can reflect the spatial distribution of business activities. However, the scope of urban commercial areas cannot be easily detected by traditional methods because of difficulties in data collection. Considering the positive correlation between business scale and nighttime lighting, this paper proposes a method of urban commercial areas detection based on nighttime lights satellite imagery. First, an imagery preprocess model is proposed to correct imageries and improve efficiency of cluster analysis. Then, an exploratory spatial data analysis and hotspots clustering method is employed to detect commercial areas by geographic distribution metric with urban commercial hotspots. Furthermore, four imageries of Wuhan City and Shenyang City are selected as an example for urban commercial areas detection experiments. Finally, a comparison is made to find out the time and space factors that affect the detection results of the commercial areas. By comparing the results with the existing map data, we are convinced that the nighttime lights satellite imagery can effectively detect the urban commercial areas. The time of image acquisition and the vegetation coverage in the area are two important factors affecting the detection effect. Harsh weather conditions and high vegetation coverage are conducive to the effective implementation of this method. This approach can be integrated with traditional methods to form a fast commercial areas detection model, which can then play a role in large-scale socio-economic surveys and dynamic detection of commercial areas evolution. Hence, a conclusion can be reached that this study provides a new method for the perception of urban socio-economic activities.


2019 ◽  
Vol 54 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Clément Jailin ◽  
Ante Buljac ◽  
Amine Bouterf ◽  
François Hild ◽  
Stéphane Roux

A projection-based digital volume correlation method (presented in a companion paper) is extended to an integrated approach for the calibration of an elastoplastic law based on a single radiograph per loading step. Instead of following a two-step sequential procedure (i.e. first, measurement of the displacement field; second, identification), the integrated method aims at identifying few model parameters directly from the gray-level projections. The analysis of an in situ tensile test composed of 127 loading steps performed in 6 min is presented. An isotropic elastoplastic constitutive law with free-form hardening behavior (i.e. controlled by only eight parameters) is identified and shows a ductile behavior (up to 6.3% strain before failure). A large improvement on the residual quality is shown and validates the proposed model and procedure. The obtained displacement fields are similar to those measured with no mechanical integration. A different parameterization of the constitutive law provides a very close result, thereby assessing the robustness of the procedure.


1998 ◽  
Vol 120 (3) ◽  
pp. 510-512 ◽  
Author(s):  
S. Szykman ◽  
J. Cagan ◽  
P. Weisser

This paper integrates simulated annealing-based component packing, layout and routing algorithms into a concurrent approach to product layout optimization. The design of a heat pump is presented to compare the integrated method to the previous sequential layout-then-route approach; results show a substantial improvement in route design with more organized component placements. The example is given in detail to provide a test case for future research in this area.


Sign in / Sign up

Export Citation Format

Share Document