scholarly journals Fast four-dimensional tensile test monitored via X-ray computed tomography: Elastoplastic identification from radiographs

2019 ◽  
Vol 54 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Clément Jailin ◽  
Ante Buljac ◽  
Amine Bouterf ◽  
François Hild ◽  
Stéphane Roux

A projection-based digital volume correlation method (presented in a companion paper) is extended to an integrated approach for the calibration of an elastoplastic law based on a single radiograph per loading step. Instead of following a two-step sequential procedure (i.e. first, measurement of the displacement field; second, identification), the integrated method aims at identifying few model parameters directly from the gray-level projections. The analysis of an in situ tensile test composed of 127 loading steps performed in 6 min is presented. An isotropic elastoplastic constitutive law with free-form hardening behavior (i.e. controlled by only eight parameters) is identified and shows a ductile behavior (up to 6.3% strain before failure). A large improvement on the residual quality is shown and validates the proposed model and procedure. The obtained displacement fields are similar to those measured with no mechanical integration. A different parameterization of the constitutive law provides a very close result, thereby assessing the robustness of the procedure.

2021 ◽  
Vol 13 (23) ◽  
pp. 4847
Author(s):  
Lang Xu ◽  
Qiang Chen ◽  
Jing-Jing Zhao ◽  
Xian-Wen Liu ◽  
Qian Xu ◽  
...  

Sentinel-1 Terrain Observation by Progressive Scans (TOPS) data have been widely applied in earthquake studies due to their open-source policy, short revisit cycle and wide coverage. However, significant near-fault displacement gradients and the moderate azimuth resolution of TOPS data make achieving high-precision along-track measurements challenging, which prevents the generation of high-quality three-dimensional (3D) displacement maps. Here, we propose an integrated method to retrieve high-quality 3D displacements based on the differential interferometric SAR (DInSAR), burst-overlap interferometry (BOI), multiple-aperture InSAR (MAI) and pixel offset tracking (POT) techniques, which are achieved to use only two track Sentinel-1 TOPS data with different viewing geometries. The key step of this method is using a weighted fusion algorithm with the interpolated BOI-derived and MAI-derived 3D displacements. In a case study of the 2021 Maduo earthquake, the calculated root mean square errors (RMSEs) from global navigation satellite system (GNSS) data and the InSAR-derived 3D displacement fields were found to be 6.3, 5.8 and 1.7 cm in north–south, east–west and up–down components, respectively. Moreover, the slip model of the 2021 Maduo earthquake jointly estimated by DInSAR and BOI measurements indicates that this seismic event was dominated by sinistral strike-slip motion mixed with some dip-slip movements; the estimated seismic moment was 1.75 × 1020 Nm, corresponding to a Mw 7.44 event.


Author(s):  
Srinivasa P. Varanasi ◽  
Athamaram H. Soni

Abstract Data exchange between different CAD systems usually requires conversion between different representations of free-form curves and surfaces. Also, trimmed surfaces give rise to high degree boundary curves. Accurate conversion of these forms becomes necessary for reliable data transfer. Also important is the issue of shape control, specially in the aircraft industry. The objective of this paper is to investigate conversion methods and effect of shape control on the design and choice of such methods.


2011 ◽  
Vol 4 (5) ◽  
pp. 6007-6040 ◽  
Author(s):  
D. Key ◽  
J. Stihle ◽  
J.-E. Petit ◽  
C. Bonnet ◽  
L. Depernon ◽  
...  

Abstract. Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace atmospheric nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.


Merging of multiple imaging modalities leads to a single image that acquire high information content. These find useful applications in disease diagnosis and treatment planning. IHS-PCA method is a spatial domain approach for fusion that offersfinestvisibility but demands vast memory and it lacks steering information. We propose an integrated approach that incorporates NSCT combined with PCA utilizing IHS space and histogram matching. The fusion algorithm is applied on MRI with PET image and improved functional property was obtained. The IHS transform is a sharpening technique that converts multispectral image from RGB channels to Intensity Hue and Saturation independent values. Histogram matching is performed with intensity values of the two input images. Pathological details in images can be emphasized in multi-scale and multi-directions by using PCA withNSCT. Fusion rule applied is weighted averaging andprincipal components are used for dimensionality reduction. Inverse NSCT and Inverse IHS are performed so as to obtain the fused image in new RGB space. Visual and subjective investigation is compared with existing methods which demonstrate that our proposed technique gives high structural data content with high spatial and spectral resolution compared withearlier methods.


2011 ◽  
Vol 4 (12) ◽  
pp. 2795-2807 ◽  
Author(s):  
D. Key ◽  
J. Stihle ◽  
J.-E. Petit ◽  
C. Bonnet ◽  
L. Depernon ◽  
...  

Abstract. Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv), as supported by field measurements in an urban park and in the exhaust of on-road vehicles.


2019 ◽  
Vol 64 (3) ◽  
pp. 1-10
Author(s):  
Matteo Filippi ◽  
Alfonso Pagani ◽  
Erasmo Carrera

This paper proposes a geometrically nonlinear three-dimensional formalism for the static and dynamic study of rotor blades. The structures are modeled using high-order beam finite elements whose kinematics are input parameters of the analysis. The displacement fields are written using two-dimensional Taylor- and Lagrange-like expansions of the cross-sectional coordinates. As far as the Taylor-like polynomials are concerned, the linear case is similar to the first-order shear deformation theory, whereas the higher-order expansions include additional contributions that describe the warping of the cross section. The Lagrange-type kinematics instead utilizes the displacements of certain physical points as degrees of freedom. The inherent three-dimensional nature of the Carrera unified formulation enables one to include all Green–Lagrange strain components as well as all coupling effects due to the geometrical features and the three-dimensional constitutive law. A number of test cases are considered to compare the current solutions with experimental and theoretical results reported in terms of large deflections/rotations and frequencies related to small amplitude vibrations.


Author(s):  
Philippe Thibaux ◽  
Dennis Van Hoecke ◽  
Gert De Vos

Steelmakers are producing plates or coils, which are subsequently formed into pipes. The mechanical properties are checked after steel and pipe production, and it is commonly observed that the tensile properties of pipes differ from the properties of plate or coil. The difference in tensile properties is attributed to the forming of the pipe and the subsequent flattening of a pipe section to make a flat tensile test sample. The reverse deformation during pipe forming and flattening is expected to cause a Bauschinger effect leading to a decrease of the yield stress of the pipe compared to the yield stress of the base material. First, a kinematics description of the pipe forming is presented. This kinematics description is important to know the deformation path followed by the material during pipe forming, flattening and tensile test. Once the deformation path is known, the stress state can be computed using constitutive laws. Three constitutive laws are presented here and their ability to describe the mechanical behaviour is further discussed. To determine the mechanical behaviour in reverse deformation paths, a specific experimental set-up has been developed to make reverse tests in tension and compression. Using this experimental facility, an X60 grade on coil has been characterized. Models parameters are fitted on the experimental data. Using these model parameters, a tensile test after forming and flattening is modelled. The simulation shows that a very accurate description of material behaviour is required to predict the final tensile properties.


Author(s):  
James R. McCusker ◽  
Kourosh Danai

A method of parameter estimation was recently introduced that separately estimates each parameter of the dynamic model [1]. In this method, regions coined as parameter signatures, are identified in the time-scale domain wherein the prediction error can be attributed to the error of a single model parameter. Based on these single-parameter associations, individual model parameters can then be estimated for iterative estimation. Relative to nonlinear least squares, the proposed Parameter Signature Isolation Method (PARSIM) has two distinct attributes. One attribute of PARSIM is to leave the estimation of a parameter dormant when a parameter signature cannot be extracted for it. Another attribute is independence from the contour of the prediction error. The first attribute could cause erroneous parameter estimates, when the parameters are not adapted continually. The second attribute, on the other hand, can provide a safeguard against local minima entrapments. These attributes motivate integrating PARSIM with a method, like nonlinear least-squares, that is less prone to dormancy of parameter estimates. The paper demonstrates the merit of the proposed integrated approach in application to a difficult estimation problem.


2019 ◽  
Vol 817 ◽  
pp. 23-29
Author(s):  
Santi Urso ◽  
Houman A. Hadad ◽  
Chiara Borsellino ◽  
Antonino Recupero ◽  
Qing Da Yang ◽  
...  

The use of externally-bonded composite materials for strengthening and rehabilitation of existing structures is among the most popular reinforcement techniques. Technologies, such as Fabric Reinforced Cementitious Matrix (FRCM) have been recently developed to address some of the issues of Fiber Reinforced Polymers (FRP), such as sensitivity to elevated temperatures and UV, impermeability, restricted application in presence of moisture or uneven substrate. For a detailed strengthening design with FRCM composites, the mechanical properties of the materials are required. Analytical models in literature discuss the interaction between the FRCM matrix and fabric using a fracture mechanics approach. These analytical laws were simplified using a trilinear curve in which a constant branch correlated to the friction is added. In the United States, “Acceptance Criteria AC434” includes the test methods to evaluate the mechanical properties of the FRCM through a direct tensile test which uses clevis grips. The material characterization per AC434 is in harmony with ACI 549.4R design guidelines. This study deals with the analysis of FRCM materials using 2D Augmented-Finite Element Method (A-FEM) approach. Constitutive material behaviors were used to implement on A-FE model, which can predict the failure modes of the composite material. The damage of the mortar was described by a trilinear curve, and the number and position of the cracks were fixed preliminarily. The fabric was modelled as a continuum layer attached to the mortar with no-thickness cohesive elements. The cohesive law between fabric and mortar was taken from the literature. The tensile test on the FRCM coupon with one layer of fabric was numerically modeled and compared to the experimental stress-strain curves. Results show that the numerical curves matched the experimental ones and capture the three branches of the FRCM constitutive law as well as the failure mode. This modelling tool will allow researchers to predict the constitutive law of an FRCM mater


Author(s):  
Junfu Chen ◽  
Zhiping Guan ◽  
Changhai Yang

In this study, an inverse method with the integration of finite element simulation and optimization algorithms is proposed to determine the flow curve of cylindrical specimen characterized by the modified Voce hardening model. The tensile test is repetitiously simulated with different combinations of model parameters designed through Latin hypercube design method, where the baseline values and variation ranges of model parameters are identified through Leroy–Bridgman method, obtaining different simulated load–displacement curves. The corresponding response is defined as the sum of the absolute area difference between the simulated load–displacement curves and the experimental one. The relationship between the model parameters and the response is established through response surface methodology and the optimal parameters combination in the modified Voce model is then determined through nonlinear programming by quadratic Lagrangian. In the case of uniaxial tensile test of mild steel Q345, the inversely identified flow curve is validated by numerically reproducing the experimental load–displacement curve and necking profile. The results indicate that the proposed inverse method is capable of evaluating the flow curve in large range of strains for cylindrical specimen accurately.


Sign in / Sign up

Export Citation Format

Share Document