scholarly journals Sea ice <i>p</i>CO<sub>2</sub> dynamics and air–ice CO<sub>2</sub> fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment – Bellingshausen Sea, Antarctica

2014 ◽  
Vol 8 (6) ◽  
pp. 2395-2407 ◽  
Author(s):  
N.-X. Geilfus ◽  
J.-L. Tison ◽  
S. F. Ackley ◽  
R. J. Galley ◽  
S. Rysgaard ◽  
...  

Abstract. Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO2 system in the ice. During the survey, cyclical warming and cooling strongly influenced the physical, chemical, and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers reduced the amplitude of these changes: snow cover influences the sea ice carbonate system by modulating the temperature and therefore the salinity of the sea ice cover. Results indicate that pCO2 was undersaturated with respect to the atmosphere both in the in situ bulk ice (from 10 to 193 μatm) and brine (from 65 to 293 μatm), causing the sea ice to act as a sink for atmospheric CO2 (up to 2.9 mmol m−2 d−1), despite supersaturation of the underlying seawater (up to 462 μatm).

2014 ◽  
Vol 8 (3) ◽  
pp. 3263-3295
Author(s):  
N.-X. Geilfus ◽  
J.-L. Tison ◽  
S. F. Ackley ◽  
S. Rysgaard ◽  
L. A. Miller ◽  
...  

Abstract. Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows that the CO2 system in the ice was primarily controlled by physical and thermodynamic processes. During the survey, a succession of warming and cold events strongly influenced the physical, chemical and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We confirm that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers muted these changes, suggesting that snow influences changes in the sea ice carbonate system through its impact on the temperature and salinity of the sea ice cover. During this survey, pCO2 was undersaturated with respect to the atmosphere both in situ, in the bulk ice (from 10 to 193 μatm), and in the brine (from 65 to 293 μatm), and the ice acted as a sink for atmospheric CO2 (up to 2.9 mmol m−2 d−1), despite the underlying supersaturated seawater (up to 462 μatm).


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


2011 ◽  
Vol 52 (57) ◽  
pp. 271-278 ◽  
Author(s):  
Katherine C. Leonard ◽  
Ted Maksym

AbstractSnow distribution is a dominating factor in sea-ice mass balance in the Bellingshausen Sea, Antarctica, through its roles in insulating the ice and contributing to snow-ice production. the wind has long been qualitatively recognized to influence the distribution of snow accumulation on sea ice, but the relative importance of drifting and blowing snow has not been quantified over Antarctic sea ice prior to this study. the presence and magnitude of drifting snow were monitored continuously along with wind speeds at two sites on an ice floe in the Bellingshausen Sea during the October 2007 Sea Ice Mass Balance in the Antarctic (SIMBA) experiment. Contemporaneous precipitation measurements collected on board the RVIB Nathaniel B. Palmer and accumulation measurements by automated ice mass-balance buoys (IMBs) allow us to document the proportion of snowfall that accumulated on level ice surfaces in the presence of high winds and blowing-snow conditions. Accumulation on the sea ice during the experiment averaged <0.01 m w.e. at both IMB sites, during a period when European Centre for Medium-Range Weather Forecasts analyses predicted >0.03 m w.e. of precipitation on the ice floe. Accumulation changes on the ice floe were clearly associated with drifting snow and high winds. Drifting-snow transport during the SIMBA experiment was supply-limited. Using these results to inform a preliminary study using a blowing-snow model, we show that over the entire Southern Ocean approximately half of the precipitation over sea ice could be lost to leads.


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V.Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
N.-X. Geilfus ◽  
K. M. Munson ◽  
E. Eronen-Rasimus ◽  
H. Kaartokallio ◽  
M. Lemes ◽  
...  

Although studies of biogeochemical processes in polar sea ice have been increasing, similar research on relatively warm low-salinity sea ice remains sparse. In this study, we investigated biogeochemical properties of the landfast sea ice cover in the brackish Bothnian Bay (Northern Baltic Sea) and the possible role of this sea ice in mediating the exchange of greenhouse gases, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) across the water column–sea ice–atmosphere interface. Observations of total alkalinity and dissolved inorganic carbon in both landfast sea ice and the water column suggest that the carbonate system is mainly driven by salinity. While high CH4 and N2O concentrations were observed in both the water column (up to 14.3 and 17.5 nmol L–1, respectively) and the sea ice (up to 143.6 and 22.4 nmol L–1, respectively), these gases appear to be enriched in sea ice compared to the water column. This enrichment may be attributable to the sea ice formation process, which concentrates impurities within brine. As sea ice temperature and brine volume decrease, gas solubility decreases as well, promoting the formation of bubbles. Gas bubbles originating from underlying sediments may also be incorporated within the ice cover and contribute to the enrichment in sea ice. The fate of these greenhouse gases within the ice merits further research, as storage in this low-salinity seasonal sea ice is temporary.


2017 ◽  
Author(s):  
Jacoba Mol ◽  
Helmuth Thomas ◽  
Paul G. Myers ◽  
Xianmin Hu ◽  
Alfonso Mucci

Abstract. The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries dissolved inorganic carbon (DIC) and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of inorganic carbon are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of waters with respect to aragonite and pH, is investigated. TA and the oxygen isotope ratio of water (δ18O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will respond to the aforementioned climate-induced changes.


2001 ◽  
Vol 33 ◽  
pp. 45-50 ◽  
Author(s):  
V.I. Lytle ◽  
S.F. Ackley

AbstractDuring a field experiment in July 1994, while the R.V. Nathaniel B. Palmer was moored to a drifting ice floe in the Weddell Sea, Antarctica, data were collected on sea-ice and snow characteristics. We report on the evolution of ice which grew in a newly opened lead. As expected with cold atmospheric conditions, congelation ice initially formed in the lead. Subsequent snow accumulation and large ocean heat fluxes resulted in melt at the base of the ice, and enhanced flooding of the snow on the ice surface. This flooded snow subsequently froze, and, 5 days after the lead opened, all the congelation ice had melted and 26 cm of snow ice had formed. We use measured sea-ice and snow salinities, thickness and oxygen isotope values of the newly formed lead ice to calculate the salt flux to the ocean. Although there was a salt flux to the ocean as the ice initially grew, we calculate a small net fresh-wlter input to the upper ocean by the end of the 5 day period. Similar processes of basal melt and surface snow-ice formation also occurred on the surrounding, thicker sea ice. Oceanographic studies in this region of the Weddell Sea have shown that salt rejection by sea-ice formation may enhance the ocean vertical thermohaline circulation and release heat from the deeper ocean to melt the ice cover. This type of deep convection is thought to initiate the Weddell polynya, which was observed only during the 1970s. Our results, which show that an ice cover can form with no salt input to the ocean, provide a mechanism which may help explain the more recent absence of the Weddell polynya.


2019 ◽  
Vol 11 (4) ◽  
pp. 417 ◽  
Author(s):  
John Yackel ◽  
Torsten Geldsetzer ◽  
Mallik Mahmud ◽  
Vishnu Nandan ◽  
Stephen Howell ◽  
...  

Ku- and C-band spaceborne scatterometer sigma nought (σ°) backscatter data of snow covered landfast first-year sea ice from the Canadian Arctic Archipelago are acquired during the winter season with coincident in situ snow-thickness observations. Our objective is to describe a methodological framework for estimating relative snow thickness on first-year sea ice based on the variance in σ° from daily time series ASCAT and QuikSCAT scatterometer measurements during the late winter season prior to melt onset. We first describe our theoretical basis for this approach, including assumptions and conditions under which the method is ideally suited and then present observational evidence from four independent case studies to support our hypothesis. Results suggest that the approach can provide a relative measure of snow thickness prior to σ° detected melt onset at both Ku- and C-band frequencies. We observe that, during the late winter season, a thinner snow cover displays a larger variance in daily σ° compared to a thicker snow cover on first-year sea ice. This is because for a given increase in air temperature, a thinner snow cover manifests a larger increase in basal snow layer brine volume owing to its higher thermal conductivity, a larger increase in the dielectric constant and a larger increase in σ° at both Ku- and C bands. The approach does not apply when snow thickness distributions on first-year sea ice being compared are statistically similar, indicating that similar late winter σ° variances likely indicate regions of similar snow thickness.


1999 ◽  
Vol 68 (1) ◽  
pp. 61-76 ◽  
Author(s):  
R.A. Massom ◽  
J.C. Comiso ◽  
A.P. Worby ◽  
V.I. Lytle ◽  
L. Stock

2018 ◽  
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel falls within 0.02 m snow water equivalent (swe) of in situ measurements across the entire study area, but exhibits deviations of 0.05 m swe from these measurements in the east where large topographic features appear to have caused a positive bias in snow depth. AMSR-E provides swe values half that of SnowModel for the majority of the sea ice growth season. The coarser resolution ERA-Interim, not segmented for sea ice freeze up area reveals a mean swe value 0.01 m higher than in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on the assumptions involved in separating snow and ice freeboard. With various assumptions about the radar penetration into the snow cover, the sea ice thickness estimates vary by up to 2 m. However, we find the best agreement between CS-2 derived and in situ thickness when a radar penetration of 0.05-0.10 m into the snow cover is assumed.


Sign in / Sign up

Export Citation Format

Share Document