scholarly journals A groove-ploughing theory for the production of mega-scale glacial lineations, and implications for ice-stream mechanics

2003 ◽  
Vol 49 (165) ◽  
pp. 240-256 ◽  
Author(s):  
Chris D. Clark ◽  
Slawek M. Tulaczyk ◽  
Chris R. Stokes ◽  
Miquel Canals

AbstractMega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge–groove structures 6–100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10–103 m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability. We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.

2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


2021 ◽  
Author(s):  
Jean Vérité ◽  
Édouard Ravier ◽  
Olivier Bourgeois ◽  
Stéphane Pochat ◽  
Thomas Lelandais ◽  
...  

<p>Over the three last decades, great efforts have been undertaken by the glaciological community to characterize the behaviour of ice streams and better constrain the dynamics of ice sheets. Studies of modern ice stream beds reveal crucial information on ice-meltwater-till-bedrock interactions, but are restricted to punctual observations limiting the understanding of ice stream dynamics as a whole. Consequently, theoretical ice stream landsystems derived from geomorphological and sedimentological observations were developed to provide wider constraints on those interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of subglacial periodic bedforms transverse to the ice flow direction – ribbed bedforms – remain unclear. The purpose of this study is (i) to explore the conditions under which these ribbed bedforms develop and (ii) to constrain their spatial organisation along ice stream beds.  </p><p>We performed physical experiments with silicon putty (to simulate the ice), water (to simulate the meltwater) and sand (to simulate a soft sedimentary bed) to model the dynamics of ice streams and produce analog subglacial landsystems. We compare the results of these experiments with the distribution of ribbed bedforms on selected examples of palaeo-ice stream beds of the Laurentide Ice Sheet. Based on this comparison, we can draw several conclusions regarding the significance of ribbed bedforms in ice stream contexts:</p><ul><li>Ribbed bedforms tend to form where the ice flow undergoes high velocity gradients and the ice-bed interface is unlubricated. Where the ribs initiate, we hypothesize that high driving stresses generate high basal shear stresses, accommodated through bed deformation of the active uppermost part of the bed.</li> <li>Ribbed bedforms can develop subglacially from a flat sediment surface beneath shear margins (i.e., lateral ribbed bedforms) and stagnant lobes (i.e., submarginal ribbed bedforms) of ice streams, while they do not develop beneath surging lobes.</li> <li>The orientation of ribbed bedforms reflects the local stress state along the ice-bed interface, with transverse bedforms formed by compression beneath ice lobes and oblique bedforms formed by transgression below lateral shear margins.</li> <li>The development of ribbed bedforms where the ice-bed interface is unlubricated reveals distinctive types of discontinuous basal drainage systems below shear and lobe margins: linked-cavities and efficient meltwater channels respectively.</li> </ul><p>Ribbed bedforms could thus constitute convenient geomorphic markers for the reconstruction of palaeo-ice stream margins, palaeo-ice flow dynamics and palaeo-meltwater drainage characteristics.</p>


2011 ◽  
Vol 5 (4) ◽  
pp. 907-916 ◽  
Author(s):  
E. C. King

Abstract. The Antarctic Ice Sheet loses mass to the surrounding ocean mainly by drainage through a network of ice streams: fast-flowing glaciers bounded on either side by ice flowing one or two orders of magnitude more slowly. Ice streams flow despite low driving stress because of low basal resistance but are known to cease flowing if the basal conditions change, which can take place when subglacial sediment becomes dewatered by freezing or by a change in hydraulic pathways. Carlson Inlet, Antarctica has been interpreted as a stagnated ice stream, based on surface and basal morphology and shallow radar reflection profiling. To resolve the question of whether the flow history of Carlson Inlet has changed in the past, I conducted a ground-based radar survey of Carlson Inlet, the adjacent part of Rutford Ice Stream, and Talutis Inlet, West Antarctica. This survey provides details of the internal ice stratigraphy and allows the flow history to be interpreted. Tight folding of isochrones in Rutford Ice Stream and Talutis Inlet is interpreted to be the result of lateral compression during convergent flow from a wide catchment into a narrow, fast-flowing trunk. In contrast, the central part of Carlson Inlet has gently-folded isochrones that drape over the bed topography, suggestive of local accumulation and slow flow. A 1-D thermo-mechanical model was used to estimate the age of the ice. I conclude that the ice in the centre of Carlson Inlet has been near-stagnant for between 3500 and 6800 yr and that fast flow has not occurred there during that time period.


2014 ◽  
Vol 55 (67) ◽  
pp. 29-38 ◽  
Author(s):  
David W. Ashmore ◽  
Robert G. Bingham ◽  
Richard C.A. Hindmarsh ◽  
Hugh F.J. Corr ◽  
Ian R. Joughin

AbstractIsolated areas of high basal drag, or ‘sticky spots’, are important and poorly understood features in the force balance and dynamics of West Antarctic ice streams. Characterizing sticky spots formed by thin or drying subglacial till using ice-penetrating radar is theoretically possible, as high radar bed-returned power (BRP) is commonly related to an abundance of free water at the ice/bed interface, provided losses from englacial attenuation can be estimated. In this study we use airborne radar data collected over Evans Ice Stream to extract BRP profiles and test the sensitivity of BRP to the adopted englacial attenuation correction. We analyse 11 ~ 2 0 km profiles in four fast-flow areas where sticky spots have been inferred to exist on the basis of model and surface data inversions. In the majority of profiles we note that the increase in basal drag is accompanied by a decrease in BRP and suggest that this is evidence both for the presence of a sticky spot in those locations and that local variations in subglacial hydrology are responsible for their existence. A comparison is made between empirical and numerical modelling approaches for deriving englacial attenuation, and our findings generally support previous studies that advocate a modelling approach.


2016 ◽  
Vol 62 (234) ◽  
pp. 696-713 ◽  
Author(s):  
CHRIS R. STOKES ◽  
MARTIN MARGOLD ◽  
TIMOTHY T. CREYTS

Rapidly-flowing ice streams are an important mechanism through which ice sheets lose mass, and much work has been focussed on elucidating the processes that increase or decrease their velocity. Recent work using standard inverse methods has inferred previously-unrecognised regular patterns of high basal shear stress (‘sticky spots’ >200 kPa) beneath a number of ice streams in Antarctica and Greenland, termed ‘traction ribs’. They appear at a scale intermediate between smaller ribbed moraines and much larger mega-ribs observed on palaeo-ice sheet beds, but it is unclear whether they have a topographic expression at the bed. Here, we report observations of rib-like bedforms from DEMs along palaeo-ice stream beds in western Canada that resemble both the pattern and dimensions of traction ribs. Their identification suggests that traction ribs may have a topographic expression that lies between, and partly overlaps with, ribbed moraines and much larger mega-ribs. These intermediate-sized bedforms support the notion of a ribbed bedform continuum. Their formation remains conjectural, but our observations from palaeo-ice streams, coupled with those from modern ice masses, suggest they are related to wave-like instabilities occurring in the coupled flow of ice and till and modulated by subglacial meltwater drainage. Their form and pattern may also involve glaciotectonism of subglacial sediments.


2009 ◽  
Vol 50 (52) ◽  
pp. 17-26 ◽  
Author(s):  
Karin Andreassen ◽  
Monica Winsborrow

AbstractThe geomorphology of palaeo-ice-stream beds and the internal structure of underlying tills can provide important information about the subglacial conditions during periods of fast flow and quiescence. This paper presents observations from three-dimensional seismic data, revealing the geomorphology of buried beds of the Bjørnøyrenna (Bear Island Trough) ice stream, the main drainage outlet of the former Barents Sea ice sheet. Repeated changes in ice dynamics are inferred from the observed successions of geomorphic features. Megablocks, aligned in long chains parallel to inferred ice-stream flowlines, and forming dipping plates that are thrust one on top of another, are taken as evidence for conditions of compressive ice flow. Mega-scale glacial lineations (MSGL) and pull-apart of underlying sediment blocks suggest extensional flow. The observed pattern of megablocks and rafts overprinted by MSGL indicates a change in ice dynamics from a compressional to an extensional flow regime. Till stiffening, due to subglacial freezing, is the favoured mechanism for creating switches in sub-ice-stream conditions. The observed pattern of geomorphic features indicates that periods of slowdown or quiescence were commonly followed by reactivation and fast flow during several glaciations, suggesting that this may be a common behaviour of marine ice streams.


2021 ◽  
Vol 15 (6) ◽  
pp. 2889-2916
Author(s):  
Jean Vérité ◽  
Édouard Ravier ◽  
Olivier Bourgeois ◽  
Stéphane Pochat ◽  
Thomas Lelandais ◽  
...  

Abstract. Conceptual ice stream land systems derived from geomorphological and sedimentological observations provide constraints on ice–meltwater–till–bedrock interactions on palaeo-ice stream beds. Within these land systems, the spatial distribution and formation processes of ribbed bedforms remain unclear. We explore the conditions under which these bedforms may develop and their spatial organization with (i) an experimental model that reproduces the dynamics of ice streams and subglacial land systems and (ii) an analysis of the distribution of ribbed bedforms on selected examples of palaeo-ice stream beds of the Laurentide Ice Sheet. We find that a specific kind of ribbed bedform can develop subglacially through soft-bed deformation, where the ice flow undergoes lateral or longitudinal velocity gradients and the ice–bed interface is unlubricated; oblique ribbed bedforms develop beneath lateral shear margins, whereas transverse ribbed bedforms develop below frontal lobes. We infer that (i) ribbed bedforms strike orthogonally to the compressing axis of the horizontal strain ellipse of the ice surface and (ii) their development reveals distinctive types of subglacial drainage patterns: linked cavities below lateral shear margins and efficient meltwater channels below frontal lobes. These ribbed bedforms may act as convenient geomorphic markers to reconstruct lateral and frontal margins, constrain ice flow dynamics, and infer meltwater drainage characteristics of palaeo-ice streams.


2010 ◽  
Vol 56 (198) ◽  
pp. 647-654 ◽  
Author(s):  
Lucas H. Beem ◽  
Ken C. Jezek ◽  
C.J. Van Der Veen

AbstractBasal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice streams and the subglacial hydrology, which remain insufficiently described by glaciological theory. Combining measurements and analytic modeling, we identify two regions where basal meltwater is produced beneath Whillans Ice Stream, West Antarctica. Downstream of the onset of shear crevasses, strong basal melt (20–50 mm a−1) is concentrated beneath the relatively narrow shear margins. Farther upstream, melt rates are consistently 3–7 mm a−1 across the width of the ice stream. We show that the transition in melt-rate patterns is coincident with the onset of shear margin crevassing and streaming flow and related to the development of significant lateral shear resistance, which reorganizes the resistive stress regime and induces a concentration of basal resistance adjacent to the shear margin. Finally, we discuss how downstream freeze-on in the ice-stream center coupled with melt beneath the shear margin might result in a slowing but widening ice stream.


2019 ◽  
Vol 13 (6) ◽  
pp. 1583-1596 ◽  
Author(s):  
Robert D. Larter ◽  
Kelly A. Hogan ◽  
Claus-Dieter Hillenbrand ◽  
James A. Smith ◽  
Christine L. Batchelor ◽  
...  

Abstract. Basal hydrological systems play an important role in controlling the dynamic behaviour of ice streams. Data showing their morphology and relationship to geological substrates beneath modern ice streams are, however, sparse and difficult to collect. We present new multibeam bathymetry data that make the Anvers-Hugo Trough west of the Antarctic Peninsula the most completely surveyed palaeo-ice stream pathway in Antarctica. The data reveal a diverse range of landforms, including streamlined features where there was fast flow in the palaeo-ice stream, channels eroded by flow of subglacial water, and compelling evidence of palaeo-ice stream shear margin locations. We interpret landforms as indicating that subglacial water availability played an important role in facilitating ice stream flow and controlling shear margin positions. Water was likely supplied to the ice stream bed episodically as a result of outbursts from a subglacial lake located in the Palmer Deep basin on the inner continental shelf. These interpretations have implications for controls on the onset of fast ice flow, the dynamic behaviour of palaeo-ice streams on the Antarctic continental shelf, and potentially also for behaviour of modern ice streams.


2020 ◽  
Author(s):  
Jean Vérité ◽  
Édouard Ravier ◽  
Olivier Bourgeois ◽  
Stéphane Pochat ◽  
Thomas Lelandais ◽  
...  

Abstract. Conceptual ice stream landsystems derived from geomorphological and sedimentological observations provide constraints on ice-meltwater-till-bedrock interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of ribbed bedforms remain unclear. We explore the conditions under which these bedforms develop and their spatial organisation with (i) an experimental model that reproduces the dynamics of ice streams and subglacial landsystems and (ii) an analysis of the distribution of ribbed bedforms on selected examples of paleo-ice stream beds of the Laurentide Ice Sheet. We find that a specific kind of ribbed bedforms can develop subglacially from a flat bed beneath shear margins (i.e., lateral ribbed bedforms) and lobes (i.e., submarginal ribbed bedforms) of ice streams. These bedforms initiate where the ice flow undergoes high velocity gradients and the ice-bed interface is unlubricated. We suggest that (i) their orientation reflects the local stress state along the ice-bed interface and (ii) their development reveals distinctive types of subglacial drainage patterns below these two kinds of margins: linked-cavities and efficient meltwater channels respectively. These ribbed bedforms are thus convenient geomorphic markers to reconstruct palaeo-ice stream margins and constrain palaeo-ice flow dynamics and palaeo-meltwater drainage characteristics.


Sign in / Sign up

Export Citation Format

Share Document