scholarly journals Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya

2007 ◽  
Vol 53 (181) ◽  
pp. 181-188 ◽  
Author(s):  
Kenneth Hewitt

AbstractFour tributaries of Panmah Glacier have surged in less than a decade, three in quick succession between 2001 and 2005. Since 1985, 13 surges have been recorded in the Karakoram Himalaya, more than in any comparable period since the 1850s. Ten were tributary surges. In these ten a full run-out of surge ice is prevented, but extended post-surge episodes affect the tributary and main glacier. The sudden concentration of events at Panmah Glacier is without precedent and at odds with known surge intervals for the glaciers. Interpretations must consider the response of thermally complex glaciers, at exceptionally high altitudes and of high relief, to changes in a distinctive regional climate. It is suggested that high-altitude warming affecting snow and glacier thermal regimes, or bringing intense, short-term melting episodes, may be more significant than mass-balance change.

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 2 presents the amazing variety of running waters, lakes, ponds, and wetlands found at high altitudes. These waterbodies are not equally distributed among the world’s high altitude places, but tend to be concentrated in certain areas, primarily determined by regional climate and topography. Thus, a large proportion of the world’s truly high altitude aquatic systems are found at lower latitudes, mostly in the tropics. The chapter presents general patterns in the geographical distribution of high altitude waters, and gives examples of some of the most extreme systems. High altitude aquatic systems and habitats cover a broad variety in dynamics and physical appearance. These differences may be related to, for example, water source (glacier-fed, rain-fed, or groundwater-fed streams), geological origin (e.g. glacial, volcanic, or tectonic lakes), or catchment slope and altitude (different types of peatland wetlands). This is exemplified and richly illustrated through numerous photos.


2017 ◽  
Vol 11 (6) ◽  
pp. 2411-2426 ◽  
Author(s):  
Peter Kuipers Munneke ◽  
Daniel McGrath ◽  
Brooke Medley ◽  
Adrian Luckman ◽  
Suzanne Bevan ◽  
...  

Abstract. The surface mass balance (SMB) of the Larsen C ice shelf (LCIS), Antarctica, is poorly constrained due to a dearth of in situ observations. Combining several geophysical techniques, we reconstruct spatial and temporal patterns of SMB over the LCIS. Continuous time series of snow height (2.5–6 years) at five locations allow for multi-year estimates of seasonal and annual SMB over the LCIS. There is high interannual variability in SMB as well as spatial variability: in the north, SMB is 0.40 ± 0.06 to 0.41 ± 0.04 m w.e. year−1, while farther south, SMB is up to 0.50 ± 0.05 m w.e. year−1. This difference between north and south is corroborated by winter snow accumulation derived from an airborne radar survey from 2009, which showed an average snow thickness of 0.34 m w.e. north of 66° S, and 0.40 m w.e. south of 68° S. Analysis of ground-penetrating radar from several field campaigns allows for a longer-term perspective of spatial variations in SMB: a particularly strong and coherent reflection horizon below 25–44 m of water-equivalent ice and firn is observed in radargrams collected across the shelf. We propose that this horizon was formed synchronously across the ice shelf. Combining snow height observations, ground and airborne radar, and SMB output from a regional climate model yields a gridded estimate of SMB over the LCIS. It confirms that SMB increases from north to south, overprinted by a gradient of increasing SMB to the west, modulated in the west by föhn-induced sublimation. Previous observations show a strong decrease in firn air content toward the west, which we attribute to spatial patterns of melt, refreezing, and densification rather than SMB.


2014 ◽  
Vol 8 (4) ◽  
pp. 1497-1507 ◽  
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40–50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Jinqiu ◽  
Li Bing ◽  
Song Tingting ◽  
He Jinglei ◽  
KongLing Zelai ◽  
...  

Oat is an annual gramineous forage grass with the remarkable ability to survive under various stressful environments. However, understanding the effects of high altitude stresses on oats is poor. Therefore, the physiological and the transcriptomic changes were analyzed at two sites with different altitudes, low (ca. 2,080 m) or high (ca. 2,918 m), respectively. Higher levels of antioxidant enzyme activity, reactive oxygen and major reductions in photosynthesis-related markers were suggested for oats at high altitudes. Furthermore, oat yields were severely suppressed at the high altitude. RNA-seq results showed that 11,639 differentially expressed genes were detected at both the low and the high altitudes in which 5,203 up-regulated and 6,436 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment tests were conducted and a group of major high altitude-responsive pigment metabolism genes, photosynthesis, hormone signaling, and cutin, suberine and wax biosynthesis were excavated. Using quantitative real-time polymerase chain response, we also confirmed expression levels of 20 DEGs (qRT-PCR). In summary, our study generated genome-wide transcript profile and may be useful for understanding the molecular mechanisms of Avena sativa L. in response to high altitude stress. These new findings contribute to our deeper relevant researches on high altitude stresses and further exploring new candidategenes for adapting plateau environment oat molecular breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ivan Lopez ◽  
Reinaldo Aravena ◽  
Daniel Soza ◽  
Alicia Morales ◽  
Silvia Riquelme ◽  
...  

The Chilean workforce has over 200,000 people that are intermittently exposed to altitudes over 4,000 m. In 2012, the Ministry of Health provided a technical guide for high-altitude workers that included a series of actions to mitigate the effects of hypoxia. Previous studies have shown the positive effect of oxygen enrichment at high altitudes. The Atacama Large Millimeter/submillimeter Array (ALMA) radiotelescope operates at 5,050 m [Array Operations Site (AOS)] and is the only place in the world where pressure swing adsorption (PSA) and liquid oxygen technologies have been installed at a large scale. These technologies reduce the equivalent altitude by increasing oxygen availability. This study aims to perform a retrospective comparison between the use of both technologies during operation in ALMA at 5,050 m. In each condition, variables such as oxygen (O2), temperature, and humidity were continuously recorded in each AOS rooms, and cardiorespiratory variables were registered. In addition, we compared portable O2 by using continuous or demand flow during outdoor activities at very high altitudes. The outcomes showed no differences between production procedures (PSA or liquid oxygen) in regulating oxygen availability at AOS facilities. As a result, big-scale installations have difficulties reaching the appropriate O2 concentration due to leaks in high mobility areas. In addition, the PSA plant requires adequacy and maintenance to operate at a very high altitude. A continuous flow of 2–3 l/min of portable O2 is recommended at 5,050 m.


2013 ◽  
Vol 7 (5) ◽  
pp. 5177-5187
Author(s):  
D. J. Quincey ◽  
A. Luckman

Abstract. The return periods of Karakoram glacier surges are almost entirely unknown. Here, we present evidence of an historic surge of the Khurdopin Glacier that began in the mid-1970s and peaked in 1979. Measured surface displacements reached > 5 km yr–1, two orders of magnitude faster than during quiescence and twice as large as any previously recorded velocity in the region. The Khurdopin Glacier next surged in the late-1990s, equating to a return period of 20 yr. Surge activity in the region needs to be better understood if accurate mass balance assessments of Hindu-Kush–Karakoram–Himalaya glaciers are to be made.


2018 ◽  
Author(s):  
Andreas Plach ◽  
Kerim H. Nisancioglu ◽  
Sébastien Le clec’h ◽  
Andreas Born ◽  
Petra M. Langebroek ◽  
...  

Abstract. Understanding the behavior of the Greenland ice sheet in a warmer climate, and particularly its surface mass balance (SMB), is important for assessing Greenland’s potential contribution to future sea level rise. The Eemian interglacial, the most recent warmer-than-present period in Earth’s history approximately 125 000 years ago, provides an analogue for a warm summer climate over Greenland. The Eemian is characterized by a positive Northern Hemisphere summer insolation anomaly, which introduces uncertainties in Eemian SMB when using positive degree day estimates. In this study, we use Eemian global and regional climate simulations in combination with three types of SMB models – a simple positive degree day, an intermediate complexity, and a full surface energy balance model – to evaluate the importance of regional climate and model complexity for estimates of Greenland SMB. We find that all SMB models perform well under the relatively cool pre-industrial and late Eemian. For the relatively warm early Eemian, the differences between SMB models are large which is associated with the representation of insolation in the respective models. For all simulated time slices there is a systematic difference between globally and regionally forced SMB models, due to the different representation of the regional climate over Greenland. We conclude that both the resolution of the simulated climate as well as the method used to estimate the SMB, are important for an accurate simulation of Greenland’s SMB. Whether model resolution or SMB method is most important depends on the climate state and in particular the prevailing insolation pattern. We suggest that future Eemian climate model inter-comparison studies are combined with different SMB models to quantify Eemian SMB uncertainty estimates.


BioScience ◽  
1978 ◽  
Vol 28 (11) ◽  
pp. 723-723
Author(s):  
Paola S. Timiras
Keyword(s):  

Author(s):  
Cynthia M. Beall ◽  
Kingman P. Strohl

Biological anthropologists aim to explain the hows and whys of human biological variation using the concepts of evolution and adaptation. High-altitude environments provide informative natural laboratories with the unique stress of hypobaric hypoxia, which is less than usual oxygen in the ambient air arising from lower barometric pressure. Indigenous populations have adapted biologically to their extreme environment with acclimatization, developmental adaptation, and genetic adaptation. People have used the East African and Tibetan Plateaus above 3,000 m for at least 30,000 years and the Andean Plateau for at least 12,000 years. Ancient DNA shows evidence that the ancestors of modern highlanders have used all three high-altitude areas for at least 3,000 years. It is necessary to examine the differences in biological processes involved in oxygen exchange, transport, and use among these populations. Such an approach compares oxygen delivery traits reported for East African Amhara, Tibetans, and Andean highlanders with one another and with short-term visitors and long-term upward migrants in the early or later stages of acclimatization to hypoxia. Tibetan and Andean highlanders provide most of the data and differ quantitatively in biological characteristics. The best supported difference is the unelevated hemoglobin concentration of Tibetans and Amhara compared with Andean highlanders as well as short- and long-term upward migrants. Moreover, among Tibetans, several features of oxygen transfer and oxygen delivery resemble those of short-term acclimatization, while several features of Andean highlanders resemble the long-term responses. Genes and molecules of the oxygen homeostasis pathways contribute to some of the differences.


Sign in / Sign up

Export Citation Format

Share Document