scholarly journals Interannual characteristics of an 80 km resolution diagnostic Arctic ice–ocean model

1991 ◽  
Vol 15 ◽  
pp. 155-162 ◽  
Author(s):  
John E. Ries ◽  
William D. Hibler

Seasonal simulations with large-scale coupled ice–ocean models have reproduced many features of the ice and ocean circulation of the Arctic Ocean and the Greenland and Norwegian seas (e.g. Hibler and Bryan, 1987; Semtner, 1987). However, the crude resolution and high lateral eddy viscosity used by these models prevent the simulation of many of the smaller-scale seasonal features and tend to produce sluggish circulation. Similarly, the use of a single year’s atmospheric forcing prevents the simulation of features on an interannual time-scale. As an initial step towards addressing these issues, an 80 km diagnostic Arctic ice–ocean model is constructed and integrated over a three-year period using daily atmospheric forcing to drive the model. To examine the effect of topographic resolution and eddy viscosity on model results, similar simulations were performed with a 160 km-resolution model. The results of these simulations are compared with one another, with buoy drift in the Arctic Basin, and with observed ice-edge variations. The model results proved most sensitive to changes in horizontal resolution. The 80 km results provided a more realistic and robust circulation in most areas of the Arctic and improved the modelled ice edge in the Barents Sea, while also successfully simulating the interannual variation in the region. Although it performed better than the 160 km model, the 80 km model still produced too large an ice extent in the Greenland Sea. No significant improvement in the ice-edge prediction was observed by varying the lateral eddy viscosity. The results indicate that problems remain in the vertical resolution in shallow regions, in treating penetrative convection, and in the simulation of inflow into the Arctic Basin through the Fram Strait.

1991 ◽  
Vol 15 ◽  
pp. 155-162 ◽  
Author(s):  
John E. Ries ◽  
William D. Hibler

Seasonal simulations with large-scale coupled ice–ocean models have reproduced many features of the ice and ocean circulation of the Arctic Ocean and the Greenland and Norwegian seas (e.g. Hibler and Bryan, 1987; Semtner, 1987). However, the crude resolution and high lateral eddy viscosity used by these models prevent the simulation of many of the smaller-scale seasonal features and tend to produce sluggish circulation. Similarly, the use of a single year’s atmospheric forcing prevents the simulation of features on an interannual time-scale. As an initial step towards addressing these issues, an 80 km diagnostic Arctic ice–ocean model is constructed and integrated over a three-year period using daily atmospheric forcing to drive the model. To examine the effect of topographic resolution and eddy viscosity on model results, similar simulations were performed with a 160 km-resolution model. The results of these simulations are compared with one another, with buoy drift in the Arctic Basin, and with observed ice-edge variations. The model results proved most sensitive to changes in horizontal resolution. The 80 km results provided a more realistic and robust circulation in most areas of the Arctic and improved the modelled ice edge in the Barents Sea, while also successfully simulating the interannual variation in the region. Although it performed better than the 160 km model, the 80 km model still produced too large an ice extent in the Greenland Sea. No significant improvement in the ice-edge prediction was observed by varying the lateral eddy viscosity. The results indicate that problems remain in the vertical resolution in shallow regions, in treating penetrative convection, and in the simulation of inflow into the Arctic Basin through the Fram Strait.


1990 ◽  
Vol 14 ◽  
pp. 338-339
Author(s):  
W.D. Hibler ◽  
Peter Ranelli

The seasonal cycle of sea ice, especially the ice margin location in the East Greenland region, is significantly affected by ocean circulation. The ocean circulation in turn can be altered by ice dynamics which cause large amounts of ice to be transported to the ice margin to be melted, thus stratifying the ocean there. By responding to wind changes, the ice dynamics can also create rapid melting or freezing events which can destabilize the ocean.In an earlier study, Hibler and Bryan (1987) carried out a diagnostic simulation of the Arctic ice-ocean system in which a coupled ice-ocean circulation model was integrated for about five years beginning with mean annual estimates by Levitus (1982) of the observed temperature and salinity fields. As a consequence of this short integration, the mean baroclinic circulation of the ocean deviated little from the initial fields, although seasonal and local effects due to the interactive models were simulated. One particularly interesting result of this study was the presence of fluctuations of oceanic heat flux at the ice margin, which appeared to coincide with strong wind events occurring over a few days which induced periods of freezing.With this diagnostic model, good results for the location of the ice margin were obtained. However, a global budget analysis indicated that the net northward heat transport through the Faero–Shetland passage was not adequate to balance the heat loss to the atmosphere sustained by the ocean in the fifth year. Moreover, a 20-year simulation without diagnostic terms showed a degraduation of the baroclinic fields in the Arctic Basin possibly due to the very weak wind stress used for this particular years's wind forcing, or perhaps due to excessive damping in the ocean due to computational requirements imposed by the coarse grid.As a first step in the development of a higher-resolution fully interactive prognostic model, we have modified this model and carried out two prognostic simulations of the Arctic ice ocean system by employing 50-year integrations. The ocean model used for this study is essentially that of Hibler and Bryan (1987). However, the boundary conditions, atmospheric forcing, and ice model have been changed. In particular, a much more robust wind forcing was obtained by replacing the monthly mean wind fields with a 30-year means in order to obtain a seasonal forcing closer to climatology. With regard to the ice rheology, a cavitating fluid model in spherical coordinates which fully conserves ice mass and air sea heat exchanges was employed. The idea here is to attenuate less of the stress into the ocean so that even though the circulation is somewhat sluggish due to large viscous damping, a reasonable current field for the Arctic Basin might be obtained.Two types of prognostic circulation experiments were carried out with this model using different southern boundary conditions. In one case, a diagnostic relaxation near the boundary as used by Hibler and Bryan (1987) was employed. In this case, heat mass and salt transports through the southern boundary are essentially simulated. In the second case, the net burotropic flow through the Faero-Shetland passage and Denmark Strait were specified with the baroclinic transports partially specified by diagnostic relaxation terms. The results from both these models are analyzed with special attention to the ice edge location and the character of the baroclinic fields in the Arctic Basin.


1990 ◽  
Vol 14 ◽  
pp. 338-339
Author(s):  
W.D. Hibler ◽  
Peter Ranelli

The seasonal cycle of sea ice, especially the ice margin location in the East Greenland region, is significantly affected by ocean circulation. The ocean circulation in turn can be altered by ice dynamics which cause large amounts of ice to be transported to the ice margin to be melted, thus stratifying the ocean there. By responding to wind changes, the ice dynamics can also create rapid melting or freezing events which can destabilize the ocean. In an earlier study, Hibler and Bryan (1987) carried out a diagnostic simulation of the Arctic ice-ocean system in which a coupled ice-ocean circulation model was integrated for about five years beginning with mean annual estimates by Levitus (1982) of the observed temperature and salinity fields. As a consequence of this short integration, the mean baroclinic circulation of the ocean deviated little from the initial fields, although seasonal and local effects due to the interactive models were simulated. One particularly interesting result of this study was the presence of fluctuations of oceanic heat flux at the ice margin, which appeared to coincide with strong wind events occurring over a few days which induced periods of freezing. With this diagnostic model, good results for the location of the ice margin were obtained. However, a global budget analysis indicated that the net northward heat transport through the Faero–Shetland passage was not adequate to balance the heat loss to the atmosphere sustained by the ocean in the fifth year. Moreover, a 20-year simulation without diagnostic terms showed a degraduation of the baroclinic fields in the Arctic Basin possibly due to the very weak wind stress used for this particular years's wind forcing, or perhaps due to excessive damping in the ocean due to computational requirements imposed by the coarse grid. As a first step in the development of a higher-resolution fully interactive prognostic model, we have modified this model and carried out two prognostic simulations of the Arctic ice ocean system by employing 50-year integrations. The ocean model used for this study is essentially that of Hibler and Bryan (1987). However, the boundary conditions, atmospheric forcing, and ice model have been changed. In particular, a much more robust wind forcing was obtained by replacing the monthly mean wind fields with a 30-year means in order to obtain a seasonal forcing closer to climatology. With regard to the ice rheology, a cavitating fluid model in spherical coordinates which fully conserves ice mass and air sea heat exchanges was employed. The idea here is to attenuate less of the stress into the ocean so that even though the circulation is somewhat sluggish due to large viscous damping, a reasonable current field for the Arctic Basin might be obtained. Two types of prognostic circulation experiments were carried out with this model using different southern boundary conditions. In one case, a diagnostic relaxation near the boundary as used by Hibler and Bryan (1987) was employed. In this case, heat mass and salt transports through the southern boundary are essentially simulated. In the second case, the net burotropic flow through the Faero-Shetland passage and Denmark Strait were specified with the baroclinic transports partially specified by diagnostic relaxation terms. The results from both these models are analyzed with special attention to the ice edge location and the character of the baroclinic fields in the Arctic Basin.


2019 ◽  
Vol 65 (4) ◽  
pp. 363-388
Author(s):  
G. V. Alekseev ◽  
A. V. Pnyushkov ◽  
A. V. Smirnov ◽  
A. E. Vyazilova ◽  
N. I. Glok

Inter-decadal changes in the water layer of Atlantic origin and freshwater content (FWC) in the upper 100 m layer were traced jointly to assess the influence of inflows from the Atlantic on FWC changes based on oceanographic observations in the Arctic Basin for the 1960s – 2010s. For this assessment, we used oceanographic data collected at the Arctic and Antarctic Research Institute (AARI) and the International Arctic Research Center (IARC). The AARI data for the decades of 1960s – 1990s were obtained mainly at the North Pole drifting ice camps, in high-latitude aerial surveys in the 1970s, as well as in ship-based expeditions in the 1990s. The IARC database contains oceanographic measurements acquired using modern CTD (Conductivity – Temperature – Depth) systems starting from the 2000s. For the reconstruction of decadal fields of the depths of the upper and lower 0 °С isotherms and FWC in the 0–100 m layer in the periods with a relatively small number of observations (1970s – 1990s), we used a climatic regression method based on the conservativeness of the large-scale structure of water masses in the Arctic Basin. Decadal fields with higher data coverage were built using the DIVAnd algorithm. Both methods showed almost identical results when compared.  The results demonstrated that the upper boundary of the Atlantic water (AW) layer, identified with the depth of zero isotherm, raised everywhere by several tens of meters in 1990s – 2010s, when compared to its position before the start of warming in the 1970s. The lower boundary of the AW layer, also determined by the depth of zero isotherm, became deeper. Such displacements of the layer boundaries indicate an increase in the volume of water in the Arctic Basin coming not only through the Fram Strait, but also through the Barents Sea. As a result, the balance of water masses was disturbed and its restoration had to occur due to the reduction of the volume of the upper most dynamic freshened layer. Accordingly, the content of fresh water in this layer should decrease. Our results confirmed that FWC in the 0–100 m layer has decreased to 2 m in the Eurasian part of the Arctic Basin to the west of 180° E in the 1990s. In contrast, the FWC to the east of 180° E and closer to the shores of Alaska and the Canadian archipelago has increased. These opposite tendencies have been intensified in the 2000s and the 2010s. A spatial correlation between distributions of the FWC and the positions of the upper AW boundary over different decades confirms a close relationship between both distributions. The influence of fresh water inflow is manifested as an increase in water storage in the Canadian Basin and the Beaufort Gyre in the 1990s – 2010s. The response of water temperature changes from the tropical Atlantic to the Arctic Basin was traced, suggesting not only the influence of SST at low latitudes on changes in FWC, but indicating the distant tropical impact on Arctic processes. 


Author(s):  
Larisa A. Pautova ◽  
Vladimir A. Silkin ◽  
Marina D. Kravchishina ◽  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

The structure of the summer planktonic communities of the Northern part of the Barents sea in the first half of August 2017 were studied. In the sea-ice melting area, the average phytoplankton biomass producing upper 50-meter layer of water reached values levels of eutrophic waters (up to 2.1 g/m3). Phytoplankton was presented by diatoms of the genera Thalassiosira and Eucampia. Maximum biomass recorded at depths of 22–52 m, the absolute maximum biomass community (5,0 g/m3) marked on the horizon of 45 m (station 5558), located at the outlet of the deep trench Franz Victoria near the West coast of the archipelago Franz Josef Land. In ice-free waters, phytoplankton abundance was low, and the weighted average biomass (8.0 mg/m3 – 123.1 mg/m3) corresponded to oligotrophic waters and lower mesotrophic waters. In the upper layers of the water population abundance was dominated by small flagellates and picoplankton from, biomass – Arctic dinoflagellates (Gymnodinium spp.) and cold Atlantic complexes (Gyrodinium lachryma, Alexandrium tamarense, Dinophysis norvegica). The proportion of Atlantic species in phytoplankton reached 75%. The representatives of warm-water Atlantic complex (Emiliania huxleyi, Rhizosolenia hebetata f. semispina, Ceratium horridum) were recorded up to 80º N, as indicators of the penetration of warm Atlantic waters into the Arctic basin. The presence of oceanic Atlantic species as warm-water and cold systems in the high Arctic indicates the strengthening of processes of “atlantificacion” in the region.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


2008 ◽  
Vol 38 (12) ◽  
pp. 2685-2703 ◽  
Author(s):  
Signe Aaboe ◽  
Ole Anders Nøst

Abstract A linear diagnostic model, solving for the time-mean large-scale circulation in the Nordic seas and Arctic Ocean, is presented. Solutions on depth contours that close within the Nordic seas and Arctic Ocean are found from vorticity balances integrated over the areas enclosed by the contours. Climatological data for wind stress and hydrography are used as input to the model, and the bottom geostrophic flow is assumed to follow depth contours. Comparison against velocity observations shows that the simplified dynamics in the model capture many aspects of the large-scale circulation. Special attention is given to the dynamical effects of an along-isobath varying bottom density, which leads to a transformation between barotropic and baroclinic transport. Along the continental slope, enclosing both the Nordic seas and Arctic Ocean, the along-slope barotropic transport has a maximum in the Nordic seas and a minimum in the Canadian Basin with a difference of 9 Sv (1 Sv ≡ 106 m3 s−1) between the two. This is caused by the relatively lower bottom densities in the Canadian Basin compared to the Nordic seas and suggests that most of the barotropic transport entering the Arctic Ocean through the Fram Strait is transformed to baroclinic transport. A conversion from barotropic to baroclinic flow may be highly important for the slope–basin exchange in the Nordic seas and Arctic Ocean. The model has obvious shortcomings due to its simplicity. However, the simplified physics and the agreement with observations make this model an excellent framework for understanding the large-scale circulation in the Nordic seas and Arctic Ocean.


2021 ◽  
Vol 51 (1) ◽  
pp. 115-129
Author(s):  
Gianluca Meneghello ◽  
John Marshall ◽  
Camille Lique ◽  
Pål Erik Isachsen ◽  
Edward Doddridge ◽  
...  

AbstractObservations of ocean currents in the Arctic interior show a curious, and hitherto unexplained, vertical and temporal distribution of mesoscale activity. A marked seasonal cycle is found close to the surface: strong eddy activity during summer, observed from both satellites and moorings, is followed by very quiet winters. In contrast, subsurface eddies persist all year long within the deeper halocline and below. Informed by baroclinic instability analysis, we explore the origin and evolution of mesoscale eddies in the seasonally ice-covered interior Arctic Ocean. We find that the surface seasonal cycle is controlled by friction with sea ice, dissipating existing eddies and preventing the growth of new ones. In contrast, subsurface eddies, enabled by interior potential vorticity gradients and shielded by a strong stratification at a depth of approximately 50 m, can grow independently of the presence of sea ice. A high-resolution pan-Arctic ocean model confirms that the interior Arctic basin is baroclinically unstable all year long at depth. We address possible implications for the transport of water masses between the margins and the interior of the Arctic basin, and for climate models’ ability to capture the fundamental difference in mesoscale activity between ice-covered and ice-free regions.


MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 657-668
Author(s):  
XIAOMING LIU ◽  
JOHN M. MORRISON ◽  
LIAN XIE

Two sets of atmospheric forcing from NCEP/NCAR 40-year reanalysis project, one based on monthly averaged climatological data and the other on 1982-83 monthly averaged data, are used to derive the global Miami Isopycnic Coordinate Ocean Model (MICOM). These two runs are referred to as the climatological experiments and 1982-83 El Nino experiments. Sensitivity tests of tropical Pacific SST to different bulk parameterizations of air-sea heat and momentum fluxes are carried out in the two experiments. Primary results show that constant transfer coefficients                          (1.2 × 10-3) for heat flux greatly overestimate the tropical Pacific SST, whereas the Liu-Katsaros-Businger (Liu et al. 1979) method can significantly improve the SST simulation especially under very low-wind speed conditions. On the other hand, Large and Pond (1982) formulation of the drag coefficient made little difference on the tropical Pacific SST simulation although it might modify the surface ocean circulation. The SST seasonal cycle and interannual variability of tropical Pacific SST are also examined in this study. Since SST is the most important oceanic parameter that provides the link between the atmosphere and the ocean, this evaluation of different parameterization schemes may facilitate future studies on coupling ocean-atmospheric numeric models.    


2015 ◽  
Vol 27 (4) ◽  
pp. 388-402 ◽  
Author(s):  
Verena Haid ◽  
Ralph Timmermann ◽  
Lars Ebner ◽  
Günther Heinemann

AbstractThe development of coastal polynyas, areas of enhanced heat flux and sea ice production strongly depend on atmospheric conditions. In Antarctica, measurements are scarce and models are essential for the investigation of polynyas. A robust quantification of polynya exchange processes in simulations relies on a realistic representation of atmospheric conditions in the forcing dataset. The sensitivity of simulated coastal polynyas in the south-western Weddell Sea to the atmospheric forcing is investigated with the Finite-Element Sea ice-Ocean Model (FESOM) using daily NCEP/NCAR reanalysis data (NCEP), 6 hourly Global Model Europe (GME) data and two different hourly datasets from the high-resolution Consortium for Small-Scale Modelling (COSMO) model. Results are compared for April to August in 2007–09. The two coarse-scale datasets often produce the extremes of the data range, while the finer-scale forcings yield results closer to the median. The GME experiment features the strongest winds and, therefore, the greatest polynya activity, especially over the eastern continental shelf. This results in higher volume and export of High Salinity Shelf Water than in the NCEP and COSMO runs. The largest discrepancies between simulations occur for 2008, probably due to differing representations of the ENSO pattern at high southern latitudes. The results suggest that the large-scale wind field is of primary importance for polynya development.


Sign in / Sign up

Export Citation Format

Share Document