scholarly journals Genesis and Decay of Mesoscale Baroclinic Eddies in the Seasonally Ice-Covered Interior Arctic Ocean

2021 ◽  
Vol 51 (1) ◽  
pp. 115-129
Author(s):  
Gianluca Meneghello ◽  
John Marshall ◽  
Camille Lique ◽  
Pål Erik Isachsen ◽  
Edward Doddridge ◽  
...  

AbstractObservations of ocean currents in the Arctic interior show a curious, and hitherto unexplained, vertical and temporal distribution of mesoscale activity. A marked seasonal cycle is found close to the surface: strong eddy activity during summer, observed from both satellites and moorings, is followed by very quiet winters. In contrast, subsurface eddies persist all year long within the deeper halocline and below. Informed by baroclinic instability analysis, we explore the origin and evolution of mesoscale eddies in the seasonally ice-covered interior Arctic Ocean. We find that the surface seasonal cycle is controlled by friction with sea ice, dissipating existing eddies and preventing the growth of new ones. In contrast, subsurface eddies, enabled by interior potential vorticity gradients and shielded by a strong stratification at a depth of approximately 50 m, can grow independently of the presence of sea ice. A high-resolution pan-Arctic ocean model confirms that the interior Arctic basin is baroclinically unstable all year long at depth. We address possible implications for the transport of water masses between the margins and the interior of the Arctic basin, and for climate models’ ability to capture the fundamental difference in mesoscale activity between ice-covered and ice-free regions.

2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


Author(s):  
Sian F. Henley ◽  
Marie Porter ◽  
Laura Hobbs ◽  
Judith Braun ◽  
Robin Guillaume-Castel ◽  
...  

Nutrient supply to the surface ocean is a key factor regulating primary production in the Arctic Ocean under current conditions and with ongoing warming and sea ice losses. Here we present seasonal nitrate concentration and hydrographic data from two oceanographic moorings on the northern Barents shelf between autumn 2017 and summer 2018. The eastern mooring was sea ice-covered to varying degrees during autumn, winter and spring, and was characterized by more Arctic-like oceanographic conditions, while the western mooring was ice-free year-round and showed a greater influence of Atlantic water masses. The seasonal cycle in nitrate dynamics was similar under ice-influenced and ice-free conditions, with biological nitrate uptake beginning near-synchronously in early May, but important differences between the moorings were observed. Nitrate supply to the surface ocean preceding and during the period of rapid drawdown was greater at the ice-free more Atlantic-like western mooring, and nitrate drawdown occurred more slowly over a longer period of time. This suggests that with ongoing sea ice losses and Atlantification, the expected shift from more Arctic-like ice-influenced conditions to more Atlantic-like ice-free conditions is likely to increase nutrient availability and the duration of seasonal drawdown in this Arctic shelf region. The extent to which this increased nutrient availability and longer drawdown periods will lead to increases in total nitrate uptake, and support the projected increases in primary production, will depend on changes in upper ocean stratification and their effect on light availability to phytoplankton as changes in climate and the physical environment proceed. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


1991 ◽  
Vol 15 ◽  
pp. 45-53 ◽  
Author(s):  
Peter H. Ranelli ◽  
William D. Hibler

A prognostic ice-ocean model of the Arctic, Greenland and Norwegian seas with daily wind and atmospheric forcing is integrated for 30 years to quasi-equilibrium. Three simulations are carried out to investigate the role played by ice deformation and transport in baroclinic adjustment of the Arctic Ocean: a standard run with precipitation and ice transport, a simulation without precipitation and a “thermodynamics only” simulation without ice transport but including precipitation. A diagnostic model is integrated for five years to serve as a comparative control run. Comparison of the vertically integrated stream-function of each of the model runs indicates that the vertical density stratification needed to maintain the circulation of the Arctic Ocean is reduced excessively when precipitation is neglected and artificially enhanced if ice transport out of the basin is ignored. This effect is even more noticeable in the surface currents and is also apparent in a comparison of simulated and observed drifting-buoy tracks. An analysis of the salt budget of the Arctic Ocean indicates that the three main components, salt transport by the ocean, salt flux from the annual cycle of ice, and a fresh-water flux from precipitation and river runoff are approximately of the same magnitude. The main circulation deficiency identified in the simulations is an inadequate flow of Atlantic water into the Arctic Basin through the Fram Strait.


2006 ◽  
Vol 44 ◽  
pp. 418-428 ◽  
Author(s):  
W.D. Hibler ◽  
A. Roberts ◽  
P. Heil ◽  
A.Y. Proshutinsky ◽  
H.L. Simmons ◽  
...  

AbstractSemi-diurnal oscillations are a ubiquitous feature of polar Sea-ice motion. Over much of the Arctic basin, inertial and Semi-diurnal tidal variability have Similar frequencies So that periodicity alone is inadequate to determine the Source of oscillations. We investigate the relative roles of tidal and inertial variability in Arctic Sea ice using a barotropic ice–ocean model with Sea ice embedded in an upper boundary layer. Results from this model are compared with ‘levitated’ ice–ocean coupling used in many models. In levitated models the mechanical buoyancy effect of Sea ice is neglected So that convergence of ice, for example, does not affect the oceanic Ekman flux. We use rotary Spectral analysis to compare Simulated and observed results. This helps to interpret the rotation Sense of Sea-ice drift and deformation at the Semi-diurnal period and is a useful discriminator between tidal and inertial effects. Results indicate that the levitated model generates an artificial inertial resonance in the presence of tidal and wind forcing, contrary to the embedded Sea-ice model. We conclude that Sea-ice mechanics can cause the rotational response of ice motion to change Sign even in the presence of Strong and opposing local tidal forcing when a physically consistent dynamic ice–ocean coupling is employed.


1991 ◽  
Vol 15 ◽  
pp. 45-53 ◽  
Author(s):  
Peter H. Ranelli ◽  
William D. Hibler

A prognostic ice-ocean model of the Arctic, Greenland and Norwegian seas with daily wind and atmospheric forcing is integrated for 30 years to quasi-equilibrium. Three simulations are carried out to investigate the role played by ice deformation and transport in baroclinic adjustment of the Arctic Ocean: a standard run with precipitation and ice transport, a simulation without precipitation and a “thermodynamics only” simulation without ice transport but including precipitation. A diagnostic model is integrated for five years to serve as a comparative control run. Comparison of the vertically integrated stream-function of each of the model runs indicates that the vertical density stratification needed to maintain the circulation of the Arctic Ocean is reduced excessively when precipitation is neglected and artificially enhanced if ice transport out of the basin is ignored. This effect is even more noticeable in the surface currents and is also apparent in a comparison of simulated and observed drifting-buoy tracks. An analysis of the salt budget of the Arctic Ocean indicates that the three main components, salt transport by the ocean, salt flux from the annual cycle of ice, and a fresh-water flux from precipitation and river runoff are approximately of the same magnitude. The main circulation deficiency identified in the simulations is an inadequate flow of Atlantic water into the Arctic Basin through the Fram Strait.


2015 ◽  
Vol 96 (12) ◽  
pp. 2079-2105 ◽  
Author(s):  
E. Carmack ◽  
I. Polyakov ◽  
L. Padman ◽  
I. Fer ◽  
E. Hunke ◽  
...  

Abstract The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated interdisciplinary and international program that will not only improve understanding of this critical component of global climate but will also provide opportunities to develop human resources with the skills required to tackle related problems in complex climate systems. We propose a research strategy with components that include 1) improved mapping of the upper- and middepth Arctic Ocean, 2) enhanced quantification of important process, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat-flux mechanisms and their interactions.


2016 ◽  
Vol 43 (13) ◽  
pp. 7019-7027 ◽  
Author(s):  
Q. Wang ◽  
S. Danilov ◽  
T. Jung ◽  
L. Kaleschke ◽  
A. Wernecke

2010 ◽  
Vol 23 (10) ◽  
pp. 2520-2543 ◽  
Author(s):  
Nikolay V. Koldunov ◽  
Detlef Stammer ◽  
Jochem Marotzke

Abstract As a contribution to a detailed evaluation of Intergovernmental Panel on Climate Change (IPCC)-type coupled climate models against observations, this study analyzes Arctic sea ice parameters simulated by the Max-Planck-Institute for Meteorology (MPI-M) fully coupled climate model ECHAM5/Max-Planck-Institute for Meteorology Hamburg Primitive Equation Ocean Model (MPI-OM) for the period from 1980 to 1999 and compares them with observations collected during field programs and by satellites. Results of the coupled run forced by twentieth-century CO2 concentrations show significant discrepancies during summer months with respect to observations of the spatial distribution of the ice concentration and ice thickness. Equally important, the coupled run lacks interannual variability in all ice and Arctic Ocean parameters. Causes for such big discrepancies arise from errors in the ECHAM5/MPI-OM atmosphere and associated errors in surface forcing fields (especially wind stress). This includes mean bias pattern caused by an artificial circulation around the geometric North Pole in its atmosphere, as well as insufficient atmospheric variability in the ECHAM5/MPI-OM model, for example, associated with Arctic Oscillation/North Atlantic Oscillation (AO/NAO). In contrast, the identical coupled ocean–ice model, when driven by NCEP–NCAR reanalysis fields, shows much increased skill in its ice and ocean circulation parameters. However, common to both model runs is too strong an ice export through the Fram Strait and a substantially biased heat content in the interior of the Arctic Ocean, both of which may affect sea ice budgets in centennial projections of the Arctic climate system.


2014 ◽  
Vol 8 (1) ◽  
pp. 303-317 ◽  
Author(s):  
A. Kriegsmann ◽  
B. Brümmer

Abstract. This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different sub-regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration in the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the cumulative impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important contributions to the recent ice extent minima in 2007 and 2012.


2013 ◽  
Vol 7 (2) ◽  
pp. 1141-1176 ◽  
Author(s):  
A. Kriegsmann ◽  
B. Brümmer

Abstract. This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration on the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important reasons for the recent ice extent minima in 2007 and 2012.


Sign in / Sign up

Export Citation Format

Share Document