scholarly journals Volume growth of a powder snow avalanche

2012 ◽  
Vol 53 (61) ◽  
pp. 57-60 ◽  
Author(s):  
Michel Y. Louge ◽  
Barbara Turnbull ◽  
Cian Carroll

AbstractWe contrast the frontal dynamics of dilute powder snow avalanches with the behavior of their tail. While the former can be regarded as a fast-moving eruption current dominated by synergistic material injection into a short head, the latter behaves as a nearly arrested dilute cloud of particles expanding by progressive incorporation of ambient air, or by entrainment of snow-cover material by late avalanches trailing well behind the front.

1990 ◽  
Vol 36 (123) ◽  
pp. 229-237 ◽  
Author(s):  
Yusuke Fukushima ◽  
Gary Parker

AbstractAppropriate expressions describing the motion of powder-snow avalanches are derived. The model consists of four equations, i.e. the conservation equations of fluid mass, snow-particle mass, momentum of the cloud, and kinetic energy of the turbulence. Insofar as the density difference between the avalanche and the ambient air becomes rather large compared with the density of the ambient air, the Boussinesq approximation, which is typically used to analyze density currents, cannot be adopted in the present case. As opposed to previous models, the total buoyancy of a powder-snow avalanche is allowed to change freely via erosion from and deposition on to a static snow layer on a slope. In the model, the snow-particle entrainment rate from the slope is directly linked to the level of turbulence.A discontinuous, large-scale powder-snow avalanche occurred on 26 January 1986 near Maseguchi, Niigata Prefecture, Japan. The avalanche appears to have had a dense core at its base. The present model is employed to simulate that part of the avalanche above any dense core. The depth of the layer of fresh snow is considered to be an important parameter in the model. The larger the depth of fresh snow, the larger is the concentration of snow attained in the avalanche, and the faster its speed. It is seen that the model provides a reasonable description of the powder-snow avalanche generated near Maseguchi. In particular, the model prediction that a powder-snow avalanche strong enough to reach Maseguchi requires a depth of fresh snow of at least 2 m is in agreement with the observed depth just before the event.


2014 ◽  
Vol 8 (2) ◽  
pp. 651-658 ◽  
Author(s):  
O. Korup ◽  
C. Rixen

Abstract. Many mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse literature, we sampled sediment concentrations of n = 28 river-spanning snow-avalanche deposits (snow bridges) in the area around Davos, eastern Swiss Alps, and inferred an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km−2 yr−1, and 0.04 to 131 t C km−2 yr−1, respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, such variability is inherent to the geometric scaling used for computing specific yields. Moreover, the widely applied method of linearly extrapolating plot scale sample data may be prone to substantial under- or overestimates. A comparison of our inferred yields with previously published work demonstrates the relevance of wet snow avalanches as prominent agents of soil erosion and transporters of biogeochemical constituents to mountain rivers. Given that a number of snow bridges persisted below the insulating debris cover well into the summer months, snow-avalanche deposits also contribute to regulating in-channel sediment and organic debris storage on seasonal timescales. Finally, our results underline the potential shortcomings of neglecting erosional processes in the winter and spring months in mountainous terrain subjected to prominent snow cover.


2014 ◽  
Vol 8 (1) ◽  
pp. 1-19 ◽  
Author(s):  
O. Korup ◽  
C. Rixen

Abstract. Many mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse existing literature, we sampled sediment concentrations of n = 28 river-spanning snow-avalanche deposits (snow bridges) in the eastern Swiss Alps, and infer an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km−2 yr−1, and 0.04 to 131 t C km−2 yr−1, respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, such variability is inherent to the geometric scaling used for computing specific yields. Moreover, the widely applied method of linearly extrapolating plot-scale sample data may be prone to substantial under- or over-estimates. A comparison of our inferred yields with previously published work demonstrates the relevance of wet snow avalanches as prominent agents of soil erosion and transporters of biogeochemical constituents to mountain rivers. Given that a number of snow bridges persisted below the insulating debris cover well into the summer months, snow-avalanche deposits also contribute to regulating in-channel sediment and organic debris storage on seasonal timescales. Finally, our results underline the potential shortcomings of neglecting erosional processes in the winter and spring months in mountainous terrain subjected to prominent snow cover.


1990 ◽  
Vol 36 (123) ◽  
pp. 229-237 ◽  
Author(s):  
Yusuke Fukushima ◽  
Gary Parker

Abstract Appropriate expressions describing the motion of powder-snow avalanches are derived. The model consists of four equations, i.e. the conservation equations of fluid mass, snow-particle mass, momentum of the cloud, and kinetic energy of the turbulence. Insofar as the density difference between the avalanche and the ambient air becomes rather large compared with the density of the ambient air, the Boussinesq approximation, which is typically used to analyze density currents, cannot be adopted in the present case. As opposed to previous models, the total buoyancy of a powder-snow avalanche is allowed to change freely via erosion from and deposition on to a static snow layer on a slope. In the model, the snow-particle entrainment rate from the slope is directly linked to the level of turbulence. A discontinuous, large-scale powder-snow avalanche occurred on 26 January 1986 near Maseguchi, Niigata Prefecture, Japan. The avalanche appears to have had a dense core at its base. The present model is employed to simulate that part of the avalanche above any dense core. The depth of the layer of fresh snow is considered to be an important parameter in the model. The larger the depth of fresh snow, the larger is the concentration of snow attained in the avalanche, and the faster its speed. It is seen that the model provides a reasonable description of the powder-snow avalanche generated near Maseguchi. In particular, the model prediction that a powder-snow avalanche strong enough to reach Maseguchi requires a depth of fresh snow of at least 2 m is in agreement with the observed depth just before the event.


2020 ◽  
Author(s):  
Adrien Favillier ◽  
Robin Mainieri ◽  
Jérôme Lopez-Saez ◽  
Mélanie Saulnier ◽  
Nicolas Eckert ◽  
...  

<p>In the course of the 20th century, high-mountain regions, such as the Alps, have experienced a significant warming with temperature increase twice as much as the global average. Such warming strongly alters the cryosphere components. It induces, for example, a shift from solid to liquid precipitation, more frequent and more intense snowmelt phases or a strong decrease in the amount and duration of snow cover, especially at the location of the snow-rain transition. Such changes in snow cover characteristics are expected to induce changes in spontaneous avalanche activity.</p><p>On forested stands, dendrogeomorphic analyses provide long and continuous chronologies of snow avalanche events and can thus contribute to the detection of trends potentially related to climate change. However, the non-stationarities found in tree-ring based chronologies of snow avalanches may also be related to socio-environmental changes. In this context, based on the latest the latest developments in dendrogeomorphology, we reconstructed the snow avalanche activity for 6 contiguous paths located in the Grand Bois de Souliers slope (Queyras massif, French Alps) with the aim to :</p><ol><li>Detect and illustrate such confounding effects;</li> <li>Disentangle the trends inherent to tree-ring approaches from real fluctuations in avalanche activity.</li> </ol><p>The resulting reconstruction covers the period 1750-2016 and evidences two clearly different trends: on the three southern avalanche paths, a sharp increase in the frequency of reconstructed events is observed since the 1970s. The distribution of tree ages, in combination with old topographic maps, allows an attribution of this non-stationarity to the destruction of a large part of the forest stand in the 1910-20s, presumably related to a devastating avalanche event. This extreme event induced a sudden change in the capability of newly colonizing trees to yield dendrogeomorphic records as information on previous or subsequent events has been removed. By contrast, on the three northern paths, snow avalanche activity is truly characterized by a strong reduction since the 1930s related to the progressive afforestation of the paths since the mid-18<sup>th</sup> century and to the colonization of the release areas since World War 2. Even if we cannot rule out the possibility that global warming may have played a certain, yet likely minor, role in the evolution of these avalanche-forest ecosystem, we conclude that the contrasted evolutions observed between the avalanche paths can, above all, be explained by socio-environmental factors (e.g., forest and grazing management) during the 18<sup>th</sup> century that have gained in importance by the rural exodus and the abatement of pastoral practices during the 20<sup>th</sup> century. In that sense, our results evidence quite clearly the crucial need for future studies aimed at detecting changes in mass-movement activity from tree-ring analyses to systematically interpret trends in activity considering interrelations between forest evolution, global warming, social practices and process activity itself.</p>


1992 ◽  
Vol 16 ◽  
pp. 7-10 ◽  
Author(s):  
Hu Ruji ◽  
Ma Hong ◽  
Wang Guo

The seasonal snow cover in the Tien Shan mountains is characterized by low density, low liquid-water content and low temperature. It is known as typical dry snow. Large temperature gradients in the basal layer of the snow cover exist throughout the entire period of snow accumulation, and depth hoar is therefore extremely well-developed. Full-depth depth-hoar avalanches, however, seldom occur. Avalanches in the Tien Shan mountains are mostly loose snow avalanches. Although normally not large in size, they are the most dangerous type. The occurrence of hazardous avalanches shows cycles of about ten years because of periodic climatic variations.


2020 ◽  
Author(s):  
Xingyue Li ◽  
Betty Sovilla ◽  
Chenfanfu Jiang ◽  
Johan Gaume

Abstract. Snow avalanches cause fatalities and economic damages. Key to their mitigation entails the understanding of snow avalanche dynamics. This study investigates the dynamic behaviors of snow avalanches, using the Material Point Method (MPM) and an elastoplastic constitutive law for porous cohesive materials. By virtue of the hybrid Eulerian-Lagrangian nature of MPM, we can handle processes involving large deformations, collisions and fractures. Meanwhile, the elastoplastic model enables us to capture the mixed-mode failure of snow, including tensile, shear and compressive failure. Using the proposed numerical approach, distinct behaviors of snow avalanches, from fluid-like to solid-like, are examined with varied snow mechanical properties. In particular, four flow regimes reported from real observations are identified, namely, cold dense, warm shear, warm plug and sliding slab regimes. Moreover, notable surges and roll-waves are observed peculiarly for flows in transition from cold dense to warm shear regimes. Each of the flow regimes shows unique flow characteristics in terms of the evolution of the avalanche front, the free surface shape, and the vertical velocity profile. We further explore the influence of slope geometry on the behaviors of snow avalanches, including the effect of slope angle and path length on the maximum flow velocity, the $\\alpha$ angle and the deposit height. Unified trends are obtained between the normalized maximum flow velocity and the scaled $\\alpha$ angle as well as the scaled deposit height, reflecting analogous rules with different geometry conditions of the slope. It is found the maximum flow velocity is mainly controlled by the friction between the bed and the flow, the geometry of the slope, and the snow properties. In addition to the flow behavior before reaching the deposition zone, which has long been regarded as the key factor governing the $\\alpha$ angle, we reveal the crucial effect of the stopping behavior in the deposition zone. Furthermore, our MPM model is benchmarked with simulations of real snow avalanches. The evolution of the avalanche front position and velocity from the MPM modeling shows reasonable agreement with the measurement data from literature. The MPM approach serves as a novel and promising tool to offer systematic and quantitative analysis for mitigation of gravitational hazards like snow avalanches.


2021 ◽  
Author(s):  
Daniel Zugliani ◽  
Giorgio Rosatti ◽  
Stefania Sansone

<p>Snow avalanche models are commonly based on a continuum fluid scheme, on the assumption of shallow flow in the direction normal to the bed, on a depth-averaged description of the flow quantities and on different assumptions concerning the velocity profile, the friction law, and the pressure in the flow direction (see Bartelt et al, 1999, Barbolini et al., 2000, for an overview). The coordinate reference system is commonly local, i.e., for each point of the domain, one axis is normal to the bed while the other two axes lay in a tangent plane. When the bed is vertical and the flow is not aligned with the steepest direction (e.g., in case of a side wall), the flow depth is no longer defined considering the normal direction and the model based on the local coordinate system is no longer valid. In near-vertical conditions, numerical problems can be expected.</p><p>Another critical point, for numerical models based on finite volume schemes and Godunov fluxes, is the accurate treatment of the source term in case of no-motion conditions (persistence, starting and stopping of the flow) due to the presence of velocity-independent, Coulomb-type terms in the bed shear stress. </p><p>In this work, we provide a numerical approach for a Voellmy-fluid based model, able to overcome the limits depicted above, to accurately simulate analytical solutions and to give reliable solutions in other cases (Zugliani & Rosatti, 2021). Firstly, differently from the other literature models, the chosen coordinate reference system is global (an axis opposite the gravity vector and the other two orthogonal axes lay in the horizontal plane) and therefore, the relevant mass and momentum equations have been derived accordingly. Secondly, these equations have been discretized by using a finite volume method on a Cartesian square grid where the Godunov fluxes has been evaluated by mean of a modified DOT scheme (Zugliani & Rosatti, 2016) while source terms in conditions of motion have been discretized by using an implicit operator-splitting technique. Finally, a specific algorithm has been derived to deal with the source term to determine the no-motion conditions.  Several test cases assess the capabilities of the proposed approach.</p><p> </p><p><strong>References:</strong></p><p>Barbolini, M., Gruber, U., Keylock, C.J., Naaim, M., Savi, F. (2000), <em>Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites.</em> Cold Regions Science and Tech. 31, 133–149.</p><p>Bartelt, P., Salm, B., Gruber, U. (1999), <em>Calculating dense-snow avalanche runout using a voellmy-fluid model with active/passive longitudinal straining.</em> Journal of Glaciology 45, 242-254.</p><p>Zugliani D., Rosatti G. (2021), <em>Accurate modeling of two-dimensional dense snow avalanches in global coordinate system: the TRENT2D<sup>❄</sup> approach. </em>Paper under review.</p><p>Zugliani, D., Rosatti, G. (2016), <em>A new Osher Riemann solver for shallow water flow over fixed or mobile bed</em>, Proceedings of the 4th European Congress of the IAHR, pp. 707–713.</p>


1980 ◽  
Vol 26 (94) ◽  
pp. 189-196
Author(s):  
T. E. Lang ◽  
J.D. Dent

AbstractSmall–scale modeling of flow and impact of snow avalanches is demonstrated to be both feasible and accurate. Geometric, kinematic, and force variables are scaled correctly under equivalence of Froude number between prototype and model using sifted snow as the model fluid. Physical and computer–simulated impact processes show correspondence, so that computer modeling is demonstrated to be a viable tool in flow and impact predictions.


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 466
Author(s):  
Dieter Issler

Data on the disastrous snow avalanche that occurred on 18 January 2017 at the spa hotel Rigopiano, municipality of Farindola in the Abruzzo region of central Italy, are analyzed in different ways. The main results are the following. (i) The 2017 Rigopiano avalanche went beyond the run-out point predicted by the topographic-statistical α-β model with standard Norwegian calibration, while avalanches in neighboring paths appear to have run no farther than the β-point of their respective paths during the same period. (ii) The curvature and super-elevation of the trimline between 1500 and 1300 m a.s.l. indicate that the velocity of the front was around 40 m s−1. In contrast, the tail velocity of the avalanche can hardly have exceeded 25 m s−1 in the same segment. (iii) The deposits observed along all of the lower track and in the run-out zone suggest that the avalanche eroded essentially the entire snow cover, but fully entrained only a moderate amount of snow (and debris). The entrainment appears to have had a considerable decelerating effect on the flow front. (iv) Estimates of the degree to which different parts of the building were damaged is combined with information about the location of the persons in the building and their fates. This allows to refine a preliminary vulnerability curve for persons in buildings obtained from the 2015 Longyearbyen avalanche, Svalbard.


Sign in / Sign up

Export Citation Format

Share Document