scholarly journals Numerical Simulation of Powder-Snow Avalanches

1990 ◽  
Vol 36 (123) ◽  
pp. 229-237 ◽  
Author(s):  
Yusuke Fukushima ◽  
Gary Parker

Abstract Appropriate expressions describing the motion of powder-snow avalanches are derived. The model consists of four equations, i.e. the conservation equations of fluid mass, snow-particle mass, momentum of the cloud, and kinetic energy of the turbulence. Insofar as the density difference between the avalanche and the ambient air becomes rather large compared with the density of the ambient air, the Boussinesq approximation, which is typically used to analyze density currents, cannot be adopted in the present case. As opposed to previous models, the total buoyancy of a powder-snow avalanche is allowed to change freely via erosion from and deposition on to a static snow layer on a slope. In the model, the snow-particle entrainment rate from the slope is directly linked to the level of turbulence. A discontinuous, large-scale powder-snow avalanche occurred on 26 January 1986 near Maseguchi, Niigata Prefecture, Japan. The avalanche appears to have had a dense core at its base. The present model is employed to simulate that part of the avalanche above any dense core. The depth of the layer of fresh snow is considered to be an important parameter in the model. The larger the depth of fresh snow, the larger is the concentration of snow attained in the avalanche, and the faster its speed. It is seen that the model provides a reasonable description of the powder-snow avalanche generated near Maseguchi. In particular, the model prediction that a powder-snow avalanche strong enough to reach Maseguchi requires a depth of fresh snow of at least 2 m is in agreement with the observed depth just before the event.

1990 ◽  
Vol 36 (123) ◽  
pp. 229-237 ◽  
Author(s):  
Yusuke Fukushima ◽  
Gary Parker

AbstractAppropriate expressions describing the motion of powder-snow avalanches are derived. The model consists of four equations, i.e. the conservation equations of fluid mass, snow-particle mass, momentum of the cloud, and kinetic energy of the turbulence. Insofar as the density difference between the avalanche and the ambient air becomes rather large compared with the density of the ambient air, the Boussinesq approximation, which is typically used to analyze density currents, cannot be adopted in the present case. As opposed to previous models, the total buoyancy of a powder-snow avalanche is allowed to change freely via erosion from and deposition on to a static snow layer on a slope. In the model, the snow-particle entrainment rate from the slope is directly linked to the level of turbulence.A discontinuous, large-scale powder-snow avalanche occurred on 26 January 1986 near Maseguchi, Niigata Prefecture, Japan. The avalanche appears to have had a dense core at its base. The present model is employed to simulate that part of the avalanche above any dense core. The depth of the layer of fresh snow is considered to be an important parameter in the model. The larger the depth of fresh snow, the larger is the concentration of snow attained in the avalanche, and the faster its speed. It is seen that the model provides a reasonable description of the powder-snow avalanche generated near Maseguchi. In particular, the model prediction that a powder-snow avalanche strong enough to reach Maseguchi requires a depth of fresh snow of at least 2 m is in agreement with the observed depth just before the event.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Dong Hwan Shin ◽  
Yeonghwan Kim ◽  
Jin Sub Kim ◽  
Do Won Kang ◽  
Jeong Lak Sohn ◽  
...  

Flow visualization was performed to give a physical insight with vortical structures of an axisymmetric impinging jet on a concave surface. High-speed imaging was employed to get clear images with a laser light sheet illumination. An axisymmetric jet is issued into quasi-ambient air through a straight pipe nozzle with fully-developed velocity profile. A regular vertical pattern of an axisymmetric jet was observed with different flow entrainment rate. While an impinged jet turns to convert a wall jet along a concave surface, the flow interaction between the large-scale toroidal vortex and the concave surface was observed in the transition between the stagnation and wall jet zone. The ring-shaped wall eddies induced from a pair of toroidal vortices were also appeared to diverge into the radial direction along the concave surface. As the jet Reynolds number increases, small-scale vortices can be developed to a large-scale toroidal vortex. The location in which a large-scale toroidal vortex strikes is generally identical to the location where the secondary peak in heat transfer occurs. The frequency of large scale toroidal vortex on concave surface is found to be nearly similar as that of wall jet on flat surface. As the nozzle-to-target spacing (L/D) increases, it becomes shorter due to the loss of jet momentum. The flow behavior of axisymmetric impinging jet on a concave surface can be helpful to design the internal passage cooling for gas turbine blade.


2009 ◽  
Vol 9 (5) ◽  
pp. 1599-1612 ◽  
Author(s):  
E. Muntán ◽  
C. García ◽  
P. Oller ◽  
G. Martí ◽  
A. García ◽  
...  

Abstract. A regional study of snow avalanche processes was undertaken in the SE Pyrenees. Dendrogeomorphology was used to date and reconstruct large-scale snow avalanche events that occurred in the last four decades. Dendrochronological analyses yielded the dates of nine winters when avalanches occurred in the recent past in six studied avalanche paths. Some of these avalanches were already known, but others had not been documented. In one case, the existing avalanche path map was improved with the dendrogeomorphological information of a larger past event. As a result of the dendrogeomorphological analyses, evidence for three regional-scale major avalanche years was identified in the SE Pyrenees from 1971 to 2004: 1971–1972, 1995–1996 and 2002–2003. The specific synoptic atmospheric situations and the most likely nivometeorological and snowpack conditions that released these major avalanches were determined using weather data for the seasons of major avalanche releases. In 1971–1972 the snow avalanche episode was characterized by a deep trough crossing the Pyrenees. In 1995–1996 a variety of meteorological situations produced several episodes of major avalanches. In 2002–2003 the more significant of two episodes was attributed to a north advection pumping an arctic air mass over the Pyrenees. The 1995–1996 avalanche season proved to be the most notable in the four past decades in the Pyrenees.


2012 ◽  
Vol 53 (61) ◽  
pp. 57-60 ◽  
Author(s):  
Michel Y. Louge ◽  
Barbara Turnbull ◽  
Cian Carroll

AbstractWe contrast the frontal dynamics of dilute powder snow avalanches with the behavior of their tail. While the former can be regarded as a fast-moving eruption current dominated by synergistic material injection into a short head, the latter behaves as a nearly arrested dilute cloud of particles expanding by progressive incorporation of ambient air, or by entrainment of snow-cover material by late avalanches trailing well behind the front.


2010 ◽  
Vol 23 (12) ◽  
pp. 3157-3180 ◽  
Author(s):  
N. Eckert ◽  
H. Baya ◽  
M. Deschatres

Abstract Snow avalanches are natural hazards strongly controlled by the mountain winter climate, but their recent response to climate change has thus far been poorly documented. In this paper, hierarchical modeling is used to obtain robust indexes of the annual fluctuations of runout altitudes. The proposed model includes a possible level shift, and distinguishes common large-scale signals in both mean- and high-magnitude events from the interannual variability. Application to the data available in France over the last 61 winters shows that the mean runout altitude is not different now than it was 60 yr ago, but that snow avalanches have been retreating since 1977. This trend is of particular note for high-magnitude events, which have seen their probability rates halved, a crucial result in terms of hazard assessment. Avalanche control measures, observation errors, and model limitations are insufficient explanations for these trends. On the other hand, strong similarities in the pattern of behavior of the proposed runout indexes and several climate datasets are shown, as well as a consistent evolution of the preferred flow regime. The proposed runout indexes may therefore be usable as indicators of climate change at high altitudes.


2005 ◽  
Vol 62 (2) ◽  
pp. 443-459 ◽  
Author(s):  
H. Gerber ◽  
G. Frick ◽  
S. P. Malinowski ◽  
J-L. Brenguier ◽  
F. Burnet

Abstract Aircraft flights through stratocumulus clouds (Sc) during the Dynamics and Chemistry of Marine Stratocumulus II (DYCOMS-II) study off the California coast found narrow in-cloud regions with less liquid water content (LWC) and cooler temperatures than average background values. The regions are named cloud holes and are assumed to be a result of water evaporated by the entrainment of dryer air from above the Sc. While such features have been noted previously, this study provided a unique opportunity to investigate in much greater detail the nature of the holes, as well as their relationship to the entrainment rate, because high-speed temperature and LWC probes with maximum spatial resolution of 10 cm were flown together for the first time. Nine long-duration flights were made through mostly unbroken Sc for which conditional sampling was used to identify the location and size of the holes. The holes are concentrated near cloud top, their average width near cloud top is about 5 m, their relative length distribution is nearly constant for all flights, and they can penetrate hundreds of meters deep into the Sc before being lost by mixing. Entrainment velocities at cloud top are estimated from measurements of fluxes of reduced LWC and vapor mixing ratios in holes, the fraction of cloud area covered by holes, and the total water jump between cloud top and the free atmosphere. Rates as large as 10 mm s−1 are found for nocturnal flights, and these rates are about 3 times larger than for daytime flight segments. The rates correlate best with the size of the buoyancy jump above the Sc; the present conditional-sampling approach for measuring the rates gives larger rates than the “flux jump” rates determined by others for the same flights by a factor of about 2. The stability criterion for all Sc predicts thinning and breakup of the Sc, which does not occur. The minimal amount of cloud-top evaporative cooling caused by entrainment contributes little to the top-down convection dominated by radiative cooling during nocturnal flights; however, evaporative cooling caused by the mixing of holes as they subduct with the large-scale eddy circulation in the Sc may contribute, but with an as-of-yet unknown amount.


2021 ◽  
Author(s):  
Dieter Issler

<p>On physical grounds, the rate of bed entrainment in gravity mass flows should be determined by the properties of the bed material and the dynamical variables of the flow. Due to the complexity of the process, most entrainment formulas proposed in the literature contain some ad-hoc parameter not tied to measurable snow properties. Among the very few models without free parameters are the Eglit–Grigorian–Yakimov (EGY) model of frontal entrainment from the 1960s and two formulas for basal entrainment, one from the 1970s due to Grigorian and Ostroumov (GO) and one (IJ) implemented in NGI’s flow code MoT-Voellmy. A common feature of these three approaches is their treating erosion as a shock and exploiting jump conditions for mass and momentum across the erosion front. The erosion or entrainment rate is determined by the difference between the avalanche-generated stress at the erosion front and the strength of the snow cover. The models differ with regard to how the shock is oriented and which momentum components are considered. The present contribution shows that each of the three models has some shortcomings: The EGY model is ambiguous if the avalanche pressure is too small to entrain the entire snow layer, the IJ model neglects normal stresses, and the GO model disregards shear stresses and acceleration of the eroded mass. As they stand, neither the GO nor the IJ model capture situations―observed experimentally by means of profiling radar―in which the snow cover is not eroded progressively but suddenly fails on a buried weak layer as the avalanche flows over it. We suggest a way to resolve the ambiguity in the EGY model and sketch a more comprehensive model combining all three approaches to capture gradual entrainment from the snow-cover surface together with erosion along a buried weak layer.</p>


2020 ◽  
Vol 13 (12) ◽  
pp. 6265-6284
Author(s):  
Emmanuel Wyser ◽  
Yury Alkhimenkov ◽  
Michel Jaboyedoff ◽  
Yury Y. Podladchikov

Abstract. We present an efficient MATLAB-based implementation of the material point method (MPM) and its most recent variants. MPM has gained popularity over the last decade, especially for problems in solid mechanics in which large deformations are involved, such as cantilever beam problems, granular collapses and even large-scale snow avalanches. Although its numerical accuracy is lower than that of the widely accepted finite element method (FEM), MPM has proven useful for overcoming some of the limitations of FEM, such as excessive mesh distortions. We demonstrate that MATLAB is an efficient high-level language for MPM implementations that solve elasto-dynamic and elasto-plastic problems. We accelerate the MATLAB-based implementation of the MPM method by using the numerical techniques recently developed for FEM optimization in MATLAB. These techniques include vectorization, the use of native MATLAB functions and the maintenance of optimal RAM-to-cache communication, among others. We validate our in-house code with classical MPM benchmarks including (i) the elastic collapse of a column under its own weight; (ii) the elastic cantilever beam problem; and (iii) existing experimental and numerical results, i.e. granular collapses and slumping mechanics respectively. We report an improvement in performance by a factor of 28 for a vectorized code compared with a classical iterative version. The computational performance of the solver is at least 2.8 times greater than those of previously reported MPM implementations in Julia under a similar computational architecture.


2015 ◽  
Vol 15 (6) ◽  
pp. 9767-9813 ◽  
Author(s):  
R. Paugam ◽  
M. Wooster ◽  
S. R. Freitas ◽  
M. Val Martin

Abstract. Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy released by the burning vegetation. The column of hot smoke rapidly entrains cooler ambient air, forming a rising plume within which the fire emissions are transported. This characteristics of this plume, and in particular the height to which it rises before releasing the majority of the smoke burden into the wider atmosphere, are important in terms of how the fire emissions are ultimately transported, since for example winds at different altitudes maybe quite different. This difference in atmospheric transport then may also affect the longevity, chemical conversion and fate of the plumes chemical consituents, with for example very high plume injection heights being associated with extreme long-range atmospheric transport. Here we review how such landscape-scale fire smoke plume injection heights are represented in larger scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system. The use of satellite Earth observation (EO) data is commonly used for this, and detail the EO datasets capable of being used to remotely assess wildfire plume height distributions and the driving characteristics of the causal fires. We also discus both the physical mechanisms and dynamics taking place in fire plumes, and investigate the efficiency and limitations of currently available injection height parameterizations. Finally, we conclude by suggestion some future parameterization developments and ideas on EO data selection that maybe relevant to the instigation of enhanced methodologies aimed at injection height representation.


Sign in / Sign up

Export Citation Format

Share Document