scholarly journals Release temperature, snow-cover entrainment and the thermal flow regime of snow avalanches

2015 ◽  
Vol 61 (225) ◽  
pp. 173-184 ◽  
Author(s):  
Cesar Vera Valero ◽  
Katreen Wikstroem Jones ◽  
Yves Bühler ◽  
Perry Bartelt

AbstractTo demonstrate how snow-cover release and entrainment temperature influence avalanche runout we develop an avalanche dynamics model that accounts for the thermal heat energy of flowing snow. Temperature defines the mechanical properties of snow and therefore the avalanche flow regime. We show that the avalanche flow regime depends primarily on the temperature of the snow mass in the starting zone, as well as the density and temperature of the entrained snow cover, which define the influx of heat energy. Avalanche temperature, however, not only depends on the initial and boundary conditions, but also on the path-dependent frictional processes that increase internal heat energy. We account for two processes: (1) frictional shearing in the slope-parallel flow direction and (2) dissipation of random fluctuation energy by inelastic granular interactions. In avalanche flow, nonlinear irreversible processes are coupled with variable initial and boundary conditions that lead to transitions in flow regime. Snow avalanches thus exhibit a wide variety of flow behaviour with variation in snow-cover temperature.

2020 ◽  
Author(s):  
Camille Ligneau ◽  
Betty Sovilla ◽  
Johan Gaume

<p>In the near future, climate change will impact the snow cover in Alpine regions. Higher precipitations and warmer temperatures are expected at lower altitude, leading to larger gradients of snow temperature, snow water content and snow depth between the top and the bottom of slopes. As a consequence, climate change will also indirectly influence the behavior of snow avalanches.</p><p>The present work aims to investigate how changes in snow cover properties will affect snow avalanches dynamics. Experimental studies allowed to characterize different avalanche flow regimes which result from particular combinations of snow physical and mechanical properties. In particular, expected variations of snow temperatures with elevation will cause more frequent and more extreme flow regime transitions inside the same avalanche. For example, a fast avalanche characterized by cold and low-cohesive snow in the upper part of the avalanche track will transform more frequently into a slow flow made of wet and heavy snow when the avalanche will entrain warm snow along the slope. A better understanding of these flow regime transitions, which have already been largely reported, is crucial, because it affects both daily danger assessment (e.g. forecasting services, road controls) and hazard mapping of avalanches.</p><p>To date, most avalanche modeling methods are not considering temperature effects and are then unable to simulate flow regime transitions and unprecedented scenarios. Our goal is then to develop a model capable of simulating reported flow regimes, flow transitions and the interactions between the snow cover and the flow (erosion, entrainment). Since these elements are not yet fully understood, we firstly model these mesoscopic processes using a 2D Discrete Element Model (DEM) in which varying particle cohesion and friction mimic the effect of changes in snow temperature. Flow regimes are simulated by granular assemblies put into motion by gravity on an inclined slope, which interact with a granular and erodible bed surface. Simulations are calibrated using experimental data coming from the avalanche test site located in Vallée de la Sionne, which record avalanches since more than 20 years. This modeling will then be used as an input to improve slope-scale models and make them more appropriate for avalanche risk management in the context of climate change.</p>


2015 ◽  
Vol 15 (6) ◽  
pp. 1275-1288 ◽  
Author(s):  
T. Feistl ◽  
P. Bebi ◽  
M. Christen ◽  
S. Margreth ◽  
L. Diefenbach ◽  
...  

Abstract. Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.


2018 ◽  
Author(s):  
Anselm Köhler ◽  
Jan-Thomas Fischer ◽  
Riccardo Scandroglio ◽  
Mathias Bavay ◽  
Jim McElwaine ◽  
...  

Abstract. Large avalanches usually encounter different snow conditions along their track. When they release as slab avalanches comprising cold snow, they can subsequently develop into powder snow avalanches entraining snow as they move down the mountain. Typically, this entrained snow will be cold (T < −1 °C) at high elevations near the surface, but warm (T > −1 °C) at lower elevations or deeper in the snow pack. The intake of thermal energy in the form of warm snow is believed to cause a flow regime transition. Measurements of flow regime transitions are performed at the Vallée de la Sionne avalanche test site in Switzerland using two different radar systems. The data are then combined with snow temperatures calculated with the snow cover model SNOWPACK. We define transitions as complete, when the deposit at runout is characterized only by warm snow, or as partial, if there is a warm flow regime but the furthest deposit is characterized by cold snow. We introduce a transition factor Ft, based on the runout of cold and warm flow regimes, as a measure to quantify the transition type. Finally, we parameterize the snow cover temperature along the avalanche track by the altitude Hs, which represents the point where the average temperature of the uppermost 0.5 m changes from cold to warm. We find that Ft is related to the snow cover properties, i.e. approximately proportional to Hs. Thus, the flow regime in the runout area and the type of transition can be predicted by knowing the snow cover temperature distribution. We find, that, if Hs is more than 500 m above the valley floor for the path geometry of Vallée de la Sionne, entrainment of warm surface snow leads to a complete flow regime transition and the runout area is reached by only warm flow regimes. Such knowledge is of great importance since the impact pressure and the effectiveness of protection measures are greatly dependent on the flow regime.


2018 ◽  
Vol 12 (12) ◽  
pp. 3759-3774 ◽  
Author(s):  
Anselm Köhler ◽  
Jan-Thomas Fischer ◽  
Riccardo Scandroglio ◽  
Mathias Bavay ◽  
Jim McElwaine ◽  
...  

Abstract. Large avalanches usually encounter different snow conditions along their track. When they release as slab avalanches comprising cold snow, they can subsequently develop into powder snow avalanches entraining snow as they move down the mountain. Typically, this entrained snow will be cold (T‾<-1 ∘C) at high elevations near the surface, but warm (T‾>-1 ∘C) at lower elevations or deeper in the snowpack. The intake of warm snow is believed to be of major importance to increase the temperature of the snow composition in the avalanche and eventually cause a flow regime transition. Measurements of flow regime transitions are performed at the Vallée de la Sionne avalanche test site in Switzerland using two different radar systems. The data are then combined with snow temperatures calculated with the snow cover model SNOWPACK. We define transitions as complete when the deposit at runout is characterized only by warm snow or as partial if there is a warm flow regime, but the farthest deposit is characterized by cold snow. We introduce a transition index Ft, based on the runout of cold and warm flow regimes, as a measure to quantify the transition type. Finally, we parameterize the snow cover temperature along the avalanche track by the altitude Hs, which represents the point where the average temperature of the uppermost 0.5 m changes from cold to warm. We find that Ft is related to the snow cover properties, i.e. approximately proportional to Hs. Thus, the flow regime in the runout area and the type of transition can be predicted by knowing the snow cover temperature distribution. We find that, if Hs is more than 500 m above the valley floor for the path geometry of Vallée de la Sionne, entrainment of warm surface snow leads to a complete flow regime transition and the runout area is reached by only warm flow regimes. Such knowledge is of great importance since the impact pressure and the effectiveness of protection measures are greatly dependent on the flow regime.


2015 ◽  
Vol 3 (1) ◽  
pp. 535-574
Author(s):  
T. Feistl ◽  
P. Bebi ◽  
M. Christen ◽  
S. Margreth ◽  
L. Diefenbach ◽  
...  

Abstract. Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s−1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.


1971 ◽  
Vol 2 (3) ◽  
pp. 146-166 ◽  
Author(s):  
DAVID A. WOOLHISER

Physically-based, deterministic models, are considered in this paper. Physically-based, in that the models have a theoretical structure based primarily on the laws of conservation of mass, energy, or momentum; deterministic in the sense that when initial and boundary conditions and inputs are specified, the output is known with certainty. This type of model attempts to describe the structure of a particular hydrologic process and is therefore helpful in predicting what will happen when some change occurs in the system.


1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document