scholarly journals Discontinuous Flow, Ice Texture, and Dirt Content in the Basal Layers of the Devon Island Ice Cap

1979 ◽  
Vol 23 (89) ◽  
pp. 209-222 ◽  
Author(s):  
R. M. Koerner ◽  
D. A. Fisher

AbstractSurface-to-bedrock cores obtained with a CRREL thermal drill were taken in 1972 and 1973 from the top of the Devon Island ice cap. There are very pronounced variations in oxygen isotope, micro-particle concentration, and ice texture in the lowermost 5 m of the core. There is a section of isotopically cold, very fine bubbly ice with high micro-particle concentrations between 2.6 and 4.4 m above the bed, considered to represent the Last Ice Age. There is coarse, isotopically warm, clean ice above and below this. For 1.2 m above the bed, the ice is finer again with high micro-particle concentrations but it shows very low bubble concentration and is isotopically the warmest in the core. While the broad variations are common to both cores, in detail there are significant variations despite the fact that the cores were taken only 27 m apart. The variations, when analysed statistically, show that at least 25–30% of the originally continuous profile is missing from each core. Faulting within the near-bedrock ice may be responsible for some of the effect but bubble fabric also gives evidence for irregular non-laminar flow. Because of the strong relationship between crystal size and micro-particle concentrations in the Devon Island cores, it is suggested that the fine-grained nature of dirty layers in the Antarctic and Greenland ice sheets is due to the effect of the dirt inclusions and not of shearing. Steep isotopic gradients in the Devon Island cores are shown to be evidence for possible shearing, which does not effect any change in the crystal texture. Clear ice near the bed is considered a tectonic feature, but the lack of effect on its bed by the ice cap confirms the non-erosional nature of an ice cap frozen to its bed.In terms of paleoclimatic history, it means that, because of bedrock effects, ice caps of intermediate depth (i.e. <400 m) can give continuous information only over the last approximate 5 000 years. Between 5 000 and 10 000 B.P. the time series becomes slightly discontinuous and beyond 10 000 B.P. so discontinuous as to allow only broad climatic inferences to be drawn.

1979 ◽  
Vol 23 (89) ◽  
pp. 209-222 ◽  
Author(s):  
R. M. Koerner ◽  
D. A. Fisher

AbstractSurface-to-bedrock cores obtained with a CRREL thermal drill were taken in 1972 and 1973 from the top of the Devon Island ice cap. There are very pronounced variations in oxygen isotope, micro-particle concentration, and ice texture in the lowermost 5 m of the core. There is a section of isotopically cold, very fine bubbly ice with high micro-particle concentrations between 2.6 and 4.4 m above the bed, considered to represent the Last Ice Age. There is coarse, isotopically warm, clean ice above and below this. For 1.2 m above the bed, the ice is finer again with high micro-particle concentrations but it shows very low bubble concentration and is isotopically the warmest in the core. While the broad variations are common to both cores, in detail there are significant variations despite the fact that the cores were taken only 27 m apart. The variations, when analysed statistically, show that at least 25–30% of the originally continuous profile is missing from each core. Faulting within the near-bedrock ice may be responsible for some of the effect but bubble fabric also gives evidence for irregular non-laminar flow. Because of the strong relationship between crystal size and micro-particle concentrations in the Devon Island cores, it is suggested that the fine-grained nature of dirty layers in the Antarctic and Greenland ice sheets is due to the effect of the dirt inclusions and not of shearing. Steep isotopic gradients in the Devon Island cores are shown to be evidence for possible shearing, which does not effect any change in the crystal texture. Clear ice near the bed is considered a tectonic feature, but the lack of effect on its bed by the ice cap confirms the non-erosional nature of an ice cap frozen to its bed.In terms of paleoclimatic history, it means that, because of bedrock effects, ice caps of intermediate depth (i.e. &lt;400 m) can give continuous information only over the last approximate 5 000 years. Between 5 000 and 10 000 B.P. the time series becomes slightly discontinuous and beyond 10 000 B.P. so discontinuous as to allow only broad climatic inferences to be drawn.


Author(s):  
Geoffrey Hope

We live in the Quaternary period and are a product of its wide fluctuations in climate and rapid environmental change. From at least the Mid-Miocene, about 25 million years ago, the expansion of the Southern Ocean has supported a powerful westerly wind system. These winds prevent tropical heat from reaching the Antarctic region, which in turn has allowed the gradual refrigeration of the world’s oceans as ice built up on Antarctica (and eventually formed an ice shelf over the sea; Nunn 1999). Earlier in the Tertiary, when the ocean column was warm from top to bottom, seasonal cooling was offset by rising warm water, and the ocean currents effectively transported heat to the poles. For the last 2 million years the main mass of the oceans has remained at maximum density, around 4°C, with warmer surface waters of the tropical and temperate regions floating only in the upper few hundred metres above the thermocline. The Quaternary is the period of refrigerated ocean which marks an ice age, with the Earth in such a delicate thermal equilibrium that relatively minor changes in the amount of solar radiation received by a given hemisphere in a given season cause major fluctuations of ice volume in terrestrial ice caps. The marked asymmetry of land and sea in the two hemispheres means that the effects of changes in the season of closest approach to the sun, of the degree of tilt of the planet and the eccentricity of the orbit, cause instability in the long-term climate. The Quaternary is defined by successive expansions and retreats of ice caps, with the maximum episodes of ice and of warmth (the interstadials) each lasting around 10 000 years. Intermediate times are cooler than present, and these persist for around 100 000 years. The lock-up of ice is reflected by global changes in sea level, ocean levels falling about 125 m during glacial maxima and rising up to 6 m above present during some interglacials. The Antarctic ice cap retains about 75 m of the ocean’s water even during the interglacial phases.


1980 ◽  
Vol 13 (2) ◽  
pp. 153-159 ◽  
Author(s):  
R. M. Koerner

AbstractA study of the average annual- and melt-season albedos for the northwest side of the Devon Island Ice Cap shows that there is no step in the average albedo either at the equilibrium or firn line. Similarly, during a period of increasing glacierization there is nowhere any dramatic increase in the average annual- or melt-season albedo with time as the equilibrium line gradually moves downslope. This means that the inception of ice caps and permanent snowfields does not make a significant change to the rate of increasing albedo and its associated feedback effects during the same period of glacierization. The extension of the annual period of snowcover generally is much more important to the feedback process (by increasing albedo) than the specific lowering of the equilibrium line. A decreased variability of summer climate, and hence the disappearance of “anomalously” warm summers, may be an integral part of the glacierizing process.


1988 ◽  
Vol 10 ◽  
pp. 5-9 ◽  
Author(s):  
Claude F. Boutron ◽  
Clair C. Patterson ◽  
Claude Lorius ◽  
V.N. Petrov ◽  
N.I. Barkov

Concentrations of lead (Pb) have been measured by the ultra-clean isotope dilution mass spectrometry technique in various sections of the Antarctic Dome C and Vostok deep ice cores, whose ages range from 3.85 to 155 ka B.P., in order to assess the natural, pre-human, sources of this toxic heavy metal in the global troposphere. Pb concentrations were very low, as low as about 0.3 pg Pb/g during the Holocene and probably during the last interglacial and part of the last ice age. On the other hand, they were quite high, up to about 40 pg Pb/g, during the Last Glacial Maximum and at the end of the penultimate ice age. Wind-blown dust from crustal rock and soil appears to be the main natural source of Pb in the global troposphere. Pb contribution from volcanoes is significant during periods of low Pb only. Contribution from the oceans is insignificant.


1988 ◽  
Vol 10 ◽  
pp. 34-37 ◽  
Author(s):  
D.A. Fisher ◽  
R.M. Koerner

Wind plays an important role in determining accumulation and δ(18O) on some ice caps. Three surface-to-bed cores spaced about 1 km apart have been taken on a flow line of the Agassiz Ice Cap, Ellesmere Island. The A84 core comes from the top of a local dome. The A79 core is 1200 m down the flow line, but very close to the ridge through the local dome. The A77 core is 1100m from A79 and well away from the ridge. The ridge causes wind turbulence, which removes or scours the soft winter snow from the A84 and A79 sites. No snow is scoured from the A77 site. Because of scour the retained accumulation and average δ(l8O) are different. The accumulations are 17.5, 11.5, 9.7 cm/a (ice equivalent) at A77, A79 and A84 respectively and the corresponding surface δs are –30.40, -27.90 and –27.05‰. The core records were dated by annual layer thicknesses and by identification of electrical conductivity measurement (ECM) acid peaks. With the three cores accurately aligned we examine the (δA84-δA77) and (δA84-δA79) time series. Significant variations in these difference series are interpreted as being caused by changes in the seasonal δ amplitude, which is then explained by changes in sea-ice cover. A seasonal δ amplitude series independently obtained from the Devon Island ice cap δ noise record is consistent with that from the Agassiz Ice Cap sites.


1976 ◽  
Vol 13 (9) ◽  
pp. 1251-1255 ◽  
Author(s):  
R. M. Koerner ◽  
H. Taniguchi

Bomb-produced radioactive fall-out layers are evident in the firn at the top of the Devon Island ice cap and also lower down in a zone where accumulation is in the form of re-frozen melt-water. This allows 1963–1974 snow accumulation (positive balance) gradients for the same period to be determined on sub-polar ice caps in Canada.


1906 ◽  
Vol 3 (12) ◽  
pp. 529-534
Author(s):  
H. T. Ferrar

In a recent number of the Geological Magazine, Dec. V, Vol. III, March, 1906, p. 120, there is an article by Prof. E. H. L. Schwarz which deals with the thickness of ice-caps during the various Glacial periods. At the outset Professor Schwarz takes the data furnished by Captain Scott's narrative of the voyage of the “Discovery” as the main support of the physicists' contention that an ice-sheet cannot exceed 1,600 feet in thickness.


2017 ◽  
Vol 11 (1) ◽  
pp. 281-302 ◽  
Author(s):  
Henning Åkesson ◽  
Kerim H. Nisancioglu ◽  
Rianne H. Giesen ◽  
Mathieu Morlighem

Abstract. Understanding of long-term dynamics of glaciers and ice caps is vital to assess their recent and future changes, yet few long-term reconstructions using ice flow models exist. Here we present simulations of the maritime Hardangerjøkulen ice cap in Norway from the mid-Holocene through the Little Ice Age (LIA) to the present day, using a numerical ice flow model combined with glacier and climate reconstructions. In our simulation, under a linear climate forcing, we find that Hardangerjøkulen grows from ice-free conditions in the mid-Holocene to its maximum extent during the LIA in a nonlinear, spatially asynchronous fashion. During its fastest stage of growth (2300–1300 BP), the ice cap triples its volume in less than 1000 years. The modeled ice cap extent and outlet glacier length changes from the LIA until today agree well with available observations. Volume and area for Hardangerjøkulen and several of its outlet glaciers vary out-of-phase for several centuries during the Holocene. This volume–area disequilibrium varies in time and from one outlet glacier to the next, illustrating that linear relations between ice extent, volume and glacier proxy records, as generally used in paleoclimatic reconstructions, have only limited validity. We also show that the present-day ice cap is highly sensitive to surface mass balance changes and that the effect of the ice cap hypsometry on the mass balance–altitude feedback is essential to this sensitivity. A mass balance shift by +0.5 m w.e. relative to the mass balance from the last decades almost doubles ice volume, while a decrease of 0.2 m w.e. or more induces a strong mass balance–altitude feedback and makes Hardangerjøkulen disappear entirely. Furthermore, once disappeared, an additional +0.1 m w.e. relative to the present mass balance is needed to regrow the ice cap to its present-day extent. We expect that other ice caps with comparable geometry in, for example, Norway, Iceland, Patagonia and peripheral Greenland may behave similarly, making them particularly vulnerable to climate change.


1986 ◽  
Vol 32 (112) ◽  
pp. 501-510 ◽  
Author(s):  
D.A. Fisher ◽  
R.M. Koerner

AbstractIn the Northern Hemisphere, ice layers which have high microparticle concentrations (in particular late Wisconsin) are “softer” than modern or Holocene ice. Such ice deforms more readily in bore-hole tilt and closure measurements. This enhancement in flow, which is shownnotto be related toc-axis concentration, has a maximum of three for late Wisconsin ice. The closure and tilt of a bore hole in the Agassiz Ice Cap, Ellesmere Island, drilled in 1977, has been followed every year since its drilling and the flow enhancement observed has been compared to the following quantities measured in the cores: concentration, δ(18O), crystal size,c-axis, Ca, Na, conductivity, and density. Flow enhancement of the ice age and bottom ice was found to be unrelated toc-axis concentration and density. Enhancement of flow is best related to microparticle (or Ca) concentration which in turn seems to be inversely related to crystal size. The latter relationship also seems to hold for the Devon Island Ice Cap and Greenland. In future, modellers of northern ice ages should use model ice that is three times softer than modern or Holocene ice.


1992 ◽  
Vol 16 ◽  
pp. 21-24 ◽  
Author(s):  
Yao Tandong ◽  
L. G. Thompson

Α δ18O record from Dunde Ice Cap, located in the Qilian mountains on the northeastern margin of the Tibetan Plateau, has been analyzed and interpreted. With an ice temperature of –7.3°C at a depth of 10 m and –4.7°C at the bottom of the ice cap, and an accumulation rate of 400 mm a−1, the Dunde core has provided interesting results. The upper part of this core, core D-l, can be easily dated by a combination of δ18O, microparticle concentration and conductivity. It can also be dated as far back as 4550 BP by counting dust layers in ice. Based on the time scale established by the above methods and on the δ18O–temperature relation, the δ18O fluctuations in the upper 120 m of the core can be interpreted as mainly due to climatic changes during the past ~ 5000 years. The warmest periods in the past ~ 5000 years in the core were found to be centered on the present, 3000, and 4100 BP, and the colder periods center around 500, 1200, 4000, and 4500 BP. It is clear from the ice-core record that the Little Ice Age was only one of many cold periods in the past, although it was the coldest period in the past 500 years.


Sign in / Sign up

Export Citation Format

Share Document