scholarly journals Modes of Operation of Thermo-Mechanically Coupled Ice Sheets

1989 ◽  
Vol 12 ◽  
pp. 57-69 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
Geoffrey S. Boulton ◽  
Kolumban Hutter

A dimensionless model of thermo-mechanically coupled ice sheets is used to analyse the operation of the system. Three thermal processes are identified: (i) dissipation, having a maximum time-scale of thousands of years; (ii) advection, having a time-scale of tens of thousands of years; and (iii) conduction, having a time-scale of 100000 years. Kinematical processes occur on two time-scales: (i) a marginal advective time-scale of thousands of years; and (ii) a diffusive time-scale of tens of thousands of years dominant in the divide area.The coupling with the temperature field in the bed produces fluctuations to the depth of a few kilometres, which means that horizontal conduction in the bed can be ignored except perhaps in the marginal area. The thermal inertia of the bed could produce significant fluctuations in the geothermal heat gradient.The operation of the thermo-mechanically coupled system is explored with a time-dependent thermo-mechanically coupled numerical algorithm. Dependence of the basal friction on temperature is introduced heuristically, and an enthalpy method is used to represent the effect of latent heat. The marginal area is shown to be dissipation-driven, and always reaches melting point. The divide area can show two modes of behaviour: a warm-based mode where the ice sheet is thin, and a cold-based mode where the ice sheet is thick. Which mode operates depends upon the applied temperature field and the amount of heat conducted from the bed.Calculations where sliding is limited were not found to be possible owing to problems with the reduced model which resulted in a violation of the approximation conditions at the margin. Cases which did work required a substantial sliding component; as a result, a significant coupling between geometry and temperature can only be demonstrated when sliding is made temperature-dependent.

1989 ◽  
Vol 12 ◽  
pp. 57-69 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
Geoffrey S. Boulton ◽  
Kolumban Hutter

A dimensionless model of thermo-mechanically coupled ice sheets is used to analyse the operation of the system. Three thermal processes are identified: (i) dissipation, having a maximum time-scale of thousands of years; (ii) advection, having a time-scale of tens of thousands of years; and (iii) conduction, having a time-scale of 100000 years. Kinematical processes occur on two time-scales: (i) a marginal advective time-scale of thousands of years; and (ii) a diffusive time-scale of tens of thousands of years dominant in the divide area. The coupling with the temperature field in the bed produces fluctuations to the depth of a few kilometres, which means that horizontal conduction in the bed can be ignored except perhaps in the marginal area. The thermal inertia of the bed could produce significant fluctuations in the geothermal heat gradient. The operation of the thermo-mechanically coupled system is explored with a time-dependent thermo-mechanically coupled numerical algorithm. Dependence of the basal friction on temperature is introduced heuristically, and an enthalpy method is used to represent the effect of latent heat. The marginal area is shown to be dissipation-driven, and always reaches melting point. The divide area can show two modes of behaviour: a warm-based mode where the ice sheet is thin, and a cold-based mode where the ice sheet is thick. Which mode operates depends upon the applied temperature field and the amount of heat conducted from the bed. Calculations where sliding is limited were not found to be possible owing to problems with the reduced model which resulted in a violation of the approximation conditions at the margin. Cases which did work required a substantial sliding component; as a result, a significant coupling between geometry and temperature can only be demonstrated when sliding is made temperature-dependent.


1986 ◽  
Vol 32 (111) ◽  
pp. 139-160 ◽  
Author(s):  
K. Hutter ◽  
S. Yakowitz ◽  
F. Szidarovszky

AbstractThe plane steady flow of a grounded ice sheet is numerically analysed using the approximate model of Morland or Hutter. In this, the ice behaves as a non-linear viscous fluid with a strongly temperature-dependent rate factor, and ice sheets are assumed to be long and shallow. The climate is assumed to be prescribed via the accumulation/ablation distribution and the surface temperature, both of which are functions of position and unknown height. The rigid base exerts external forcings via the normal heat flow, the geothermal heat, and a given basal sliding condition connecting the tangential velocity, tangential traction, and normal traction. The functional relations are those of Morland (1984) or motivated by his work. We use equations in his notation.The governing equations and boundary conditions in dimensionless form are briefly stated and dimensionless variables are related to their physical counterparts. The thermo-mechanical parabolic boundary-value problem, found to depend on physical scales, constitutive properties, and external forcing functions, has been numerically solved. For reasons of stability, the numerical integration must proceed from the ice divide towards the margin, which requires a special analysis of the ice divide. We present this analysis and then describe the versatility and limitations of the constructed computer code.Results of extensive computations are shown. In particular, we prove that the Morland–Hutter model for ice sheets is only applicable when sliding is sufficiently large (satisfying inequality (30)). In the range of the validity of this inequality, it is then demonstrated that of all physical scaling parameters only a single π-product influences the geometry and the flow within the ice sheet. We analyse the role played by advection, diffusion, and dissipation in the temperature distribution, and discuss the significance of the rheological non-linearities. Variations of the external forcings, such as accumulation/ablation conditions, free surface temperature, and geothermal heat, demonstrate the sensitivity of the ice-sheet geometry to accumulation conditions and the robustness of the flow to variations in the thermal state. We end with a summary of results and a critical review of the model.


1979 ◽  
Vol 23 (89) ◽  
pp. 425-428
Author(s):  
T. J. Hughes

Abstract Most numerical models of present ice-sheet dynamics predict basal thermal conditions for an assumed geothermal heat flux and measured ice thickness, surface temperature, and snow precipitation. These models are not ideally suited for reconstructing former ice sheets because what is known for present ice sheets is unknown for former ones, and vice versa. In particular, geothermal heat fluxes are immeasurable at an ice-sheet bed but can be measured after the ice sheet is gone, and the thermal conditions predicted at an ice-sheet bed can be inferred from the glacial-geological–topographic record after the ice sheet is gone. The Maine CLIMAP ice-sheet reconstruction model uses these inferred basal thermal conditions to compute ice thicknesses from basal shear stresses. Basal shear stress is assumed to reflect the degree of ice–bed coupling which, in turn, is assumed to reflect the amount and distribution of basal water under the ice sheet. Under the ice-sheet interior, basal water exists in a thin film of constant thickness covering the low places on the bed. This film expands for a melting bed and contracts for a freezing bed. Along the ice-sheet margin, basal water exists in narrow channels of varying thickness corresponding to troughs on the bed. These water channels become deeper for a melting bed and shallower for a freezing bed. In areas covered by the Laurentide and Scandinavian ice sheets, myriads of interconnected lakes in regions of greatest postglacial rebound are interpreted as evidence suggesting the interior basal water distribution, whereas eskers pointed toward terminal moraines and troughs across continental shelves are interpreted as evidence suggesting the basal water distribution toward the margins. Continental-shelf troughs were assumed to correspond to former ice streams, by analogy with observations in Greenland and Antarctica. Three modes of glacial erosion are considered to be responsible for the lakes, eskers, troughs, and associated topography. Quarrying is by a freeze-thaw mechanism which occurs where the melting-point isotherm intersects bedrock, so it is important only for freezing or melting beds because high places on the bed are frozen, low places are melted, and minor basal temperature fluctuations shift the isotherm separating them. Crushing results when rocks at the ice-bed interface are ground against each other and the bed by glacial sliding, so it occurs where the bed is melted and is most important when the entire bed is melted. Abrasion of bedrock occurs when rock cutting tools imbedded in the ice at the ice–rock interface are moved across the interface by glacial sliding, so it is also most important when the entire bed is melted. If basal melting continued after the entire bed is melted, abrasion-rates drop because the basal water layer thickens and drowns bedrock projections otherwise subjected to abrasion. Basal freezing reduces both crushing and abrasion-rates by coating quarried rocks with a sheath of relatively soft ice and transporting them upward from the ice–rock interface. An initially flat subglacial topography will develop depressions where glacial erosion is greatest and deposition is least, and ridges where the opposite conditions prevail. We interpret the central depressions represented today by Hudson Bay and the Gulf of Bothnia as caused by erosion on a melting bed under the Laurentide and Scandinavian ice sheets, respectively. The arc of lakes, gulfs, and shallow seas surrounding these depressions are interpreted as resulting from a freezing bed under the former ice sheets. The present watershed separating the depressions from the arcs marks the approximate former basal equilibrium line where the bed was melted. The Canadian and Baltic continental shields beyond these arcs are blanketed by material eroded from within the arcs, and represent areas having a frozen bed where evidence for abrasion is missing and a second zone having a melting bed where evidence for abrasion is present. This basic pattern was assumed to be imprinted on the bed during the steady-state period of maximum ice-sheet extent, and maintained in varying degrees during growth and shrinkage of these ice sheets.


1979 ◽  
Vol 23 (89) ◽  
pp. 425-428
Author(s):  
T. J. Hughes

AbstractMost numerical models of present ice-sheet dynamics predict basal thermal conditions for an assumed geothermal heat flux and measured ice thickness, surface temperature, and snow precipitation. These models are not ideally suited for reconstructing former ice sheets because what is known for present ice sheets is unknown for former ones, and vice versa. In particular, geothermal heat fluxes are immeasurable at an ice-sheet bed but can be measured after the ice sheet is gone, and the thermal conditions predicted at an ice-sheet bed can be inferred from the glacial-geological–topographic record after the ice sheet is gone. The Maine CLIMAP ice-sheet reconstruction model uses these inferred basal thermal conditions to compute ice thicknesses from basal shear stresses.Basal shear stress is assumed to reflect the degree of ice–bed coupling which, in turn, is assumed to reflect the amount and distribution of basal water under the ice sheet. Under the ice-sheet interior, basal water exists in a thin film of constant thickness covering the low places on the bed. This film expands for a melting bed and contracts for a freezing bed. Along the ice-sheet margin, basal water exists in narrow channels of varying thickness corresponding to troughs on the bed. These water channels become deeper for a melting bed and shallower for a freezing bed. In areas covered by the Laurentide and Scandinavian ice sheets, myriads of interconnected lakes in regions of greatest postglacial rebound are interpreted as evidence suggesting the interior basal water distribution, whereas eskers pointed toward terminal moraines and troughs across continental shelves are interpreted as evidence suggesting the basal water distribution toward the margins. Continental-shelf troughs were assumed to correspond to former ice streams, by analogy with observations in Greenland and Antarctica.Three modes of glacial erosion are considered to be responsible for the lakes, eskers, troughs, and associated topography. Quarrying is by a freeze-thaw mechanism which occurs where the melting-point isotherm intersects bedrock, so it is important only for freezing or melting beds because high places on the bed are frozen, low places are melted, and minor basal temperature fluctuations shift the isotherm separating them. Crushing results when rocks at the ice-bed interface are ground against each other and the bed by glacial sliding, so it occurs where the bed is melted and is most important when the entire bed is melted. Abrasion of bedrock occurs when rock cutting tools imbedded in the ice at the ice–rock interface are moved across the interface by glacial sliding, so it is also most important when the entire bed is melted. If basal melting continued after the entire bed is melted, abrasion-rates drop because the basal water layer thickens and drowns bedrock projections otherwise subjected to abrasion. Basal freezing reduces both crushing and abrasion-rates by coating quarried rocks with a sheath of relatively soft ice and transporting them upward from the ice–rock interface.An initially flat subglacial topography will develop depressions where glacial erosion is greatest and deposition is least, and ridges where the opposite conditions prevail. We interpret the central depressions represented today by Hudson Bay and the Gulf of Bothnia as caused by erosion on a melting bed under the Laurentide and Scandinavian ice sheets, respectively. The arc of lakes, gulfs, and shallow seas surrounding these depressions are interpreted as resulting from a freezing bed under the former ice sheets. The present watershed separating the depressions from the arcs marks the approximate former basal equilibrium line where the bed was melted. The Canadian and Baltic continental shields beyond these arcs are blanketed by material eroded from within the arcs, and represent areas having a frozen bed where evidence for abrasion is missing and a second zone having a melting bed where evidence for abrasion is present. This basic pattern was assumed to be imprinted on the bed during the steady-state period of maximum ice-sheet extent, and maintained in varying degrees during growth and shrinkage of these ice sheets.


1974 ◽  
Vol 13 (67) ◽  
pp. 148-151
Author(s):  
K. Philberth ◽  
B. Fédérer

The influence of the surface slope on the temperature profile in the upper part of a cold ice sheet can be described by a function which is independent of the geothermal heat and the heat of friction. This function is calculated for the two-dimensional and the axisymmetric cases. In the two-dimensional case its simplest form is proportional to the horizontal velocity and to the height above bedrock reduced by a constant; another form of this function is approximately proportional to the square of velocity and height.


1996 ◽  
Vol 42 (140) ◽  
pp. 37-42 ◽  
Author(s):  
Jan T. Heine ◽  
David F. Mctigue

AbstractA finite-difference numerical model is used to simulate the temperature profile at the center of an ice sheet throughout the course of a glaciation. The ice sheet is gradually built to a thickness of 3000 m over about 10 000 years, starting on permafrost. A geothermal heat flux is applied at large depth. For an initial surface temperature of –12.5°C, our model shows that basal melting occurs 72000 years after the onset of the glaciation. The important parameters determining the basal temperatures are the initial temperature of the ice and substrate, the rate of downward advection of cold ice and, to a lesser extent, the thickness of the ice sheet. The growth history of the ice sheet does not significantly influence the time at which basal melting occurs. Our results show the possibility that the central parts of the continental ice sheets were cold-based for a significant part of their existence. Heating due to the geothermal heat flux cannot account for basal melting during most or all of a glacial cycle. These results may help to explain the existence of preserved land forms under the ice sheets.


1961 ◽  
Vol 3 (30) ◽  
pp. 965-978 ◽  
Author(s):  
J. Weertman

AbstractA new mechanism is described which explains the formation of moraines in the ablation areas of cold ice sheets. The mechanism involves the freezing of water onto the bottom surface of an ice sheet. This water comes from regions of the bottom surface where the combination of the geothermal heat and the heat produced by the sliding of ice over the bed is sufficient to melt ice. A number of criticisms are made of the shear hypothesis, which has been advanced to explain moraines occurring on Baffin Island and near Thule, Greenland. It is concluded that this older hypothesis may be inadequate to account for these moraines.Although in theory the mechanism proposed in this paper undoubtedly will lead to the formation of moraines, the existing field data are insufficient to prove conclusively that actual moraines have originated by means of this mechanism.


1974 ◽  
Vol 13 (67) ◽  
pp. 148-151
Author(s):  
K. Philberth ◽  
B. Fédérer

The influence of the surface slope on the temperature profile in the upper part of a cold ice sheet can be described by a function which is independent of the geothermal heat and the heat of friction. This function is calculated for the two-dimensional and the axisymmetric cases. In the two-dimensional case its simplest form is proportional to the horizontal velocity and to the height above bedrock reduced by a constant; another form of this function is approximately proportional to the square of velocity and height.


1996 ◽  
Vol 42 (140) ◽  
pp. 37-42 ◽  
Author(s):  
Jan T. Heine ◽  
David F. Mctigue

AbstractA finite-difference numerical model is used to simulate the temperature profile at the center of an ice sheet throughout the course of a glaciation. The ice sheet is gradually built to a thickness of 3000 m over about 10 000 years, starting on permafrost. A geothermal heat flux is applied at large depth. For an initial surface temperature of –12.5°C, our model shows that basal melting occurs 72000 years after the onset of the glaciation. The important parameters determining the basal temperatures are the initial temperature of the ice and substrate, the rate of downward advection of cold ice and, to a lesser extent, the thickness of the ice sheet. The growth history of the ice sheet does not significantly influence the time at which basal melting occurs. Our results show the possibility that the central parts of the continental ice sheets were cold-based for a significant part of their existence. Heating due to the geothermal heat flux cannot account for basal melting during most or all of a glacial cycle. These results may help to explain the existence of preserved land forms under the ice sheets.


2021 ◽  
Author(s):  
Nanna Bjørnholt Karlsson ◽  
Anne M Solgaard ◽  
Kenneth D Mankoff ◽  
Fabien Gillet-Chaulet ◽  
Joseph A. MacGregor ◽  
...  

<p>The total mass balance of ice sheets is determined using estimates of ice volume change from satellite altimetry, measurements of gravity changes, or by differencing solid ice discharge and surface mass balance. The basal melt is only implicitly included in the first two and entirely neglected by the last method. Here, we show that the basal mass loss of the Greenland Ice Sheet is a non-negligible component of the total mass budget. We estimate that the basal melt is 21.4 +4.4/-4.0 Gt per year corresponding to 8% of the ice sheet’s total mass balance. The basal melt is composed of three separate terms; melt caused by frictional heat, geothermal heat and heat from surface meltwater, respectively, and the basal friction term is responsible for half of the basal melt.</p><p>Importantly, the geothermal and friction heat are active year round. This implies that a quantifiable volume of freshwater is discharged into the Greenlandic fjords during the winter where the ice-fjord interactions often are assumed dormant. Here, we present basal melt volumes from different outlet glaciers that discharge into Greenlandic fjords. We compare the basal melt to the freshwater volumes generated by surface meltwater, and identify locations where basal melt volumes are comparable to surface meltwater during the winter.</p>


Sign in / Sign up

Export Citation Format

Share Document