scholarly journals Relation between ice sheet internal radio-echo reflections and ice fabric at Mizuho Station, Antarctica

1993 ◽  
Vol 17 ◽  
pp. 269-275 ◽  
Author(s):  
Shuji Fujita ◽  
Shinji Mae

The relationship between ice fabric and the internal radio-echo reflections was investigated using observation data collected at Mizuho Station, Antarctica. The data were obtained by 179 MHz radio-echo sounding and the ice fabric was measured from 700 m Mizuho ice core. The dielectric permittivity tensor at given depths in the ice sheet was calculated from the ice fabric.The calculated dielectric permittivity tensor showed that the ice sheet at Mizuho Station is a uniaxially birefringent medium. The symmetrical axis of rotation was the same as the flow line. In such a medium, theory predicts that the electric field vectors are allowed only in the two directions parallel and perpendicular to the flow line. The prediction coincided well with the observation: a strong signal was observed only when the transmitting antenna and the receiving antenna, kept parallel to one another, were oriented parallel or perpendicular to the flow line. However, the observed signal strength in these two directions differed from one another at each depth.It is also shown that the power reflection coefficient due to the variation of ice fabric with depth is of approximately the same order as that due to the density change and is large enough to produce the predominant internal radio-echo reflections.

1993 ◽  
Vol 17 ◽  
pp. 269-275 ◽  
Author(s):  
Shuji Fujita ◽  
Shinji Mae

The relationship between ice fabric and the internal radio-echo reflections was investigated using observation data collected at Mizuho Station, Antarctica. The data were obtained by 179 MHz radio-echo sounding and the ice fabric was measured from 700 m Mizuho ice core. The dielectric permittivity tensor at given depths in the ice sheet was calculated from the ice fabric. The calculated dielectric permittivity tensor showed that the ice sheet at Mizuho Station is a uniaxially birefringent medium. The symmetrical axis of rotation was the same as the flow line. In such a medium, theory predicts that the electric field vectors are allowed only in the two directions parallel and perpendicular to the flow line. The prediction coincided well with the observation: a strong signal was observed only when the transmitting antenna and the receiving antenna, kept parallel to one another, were oriented parallel or perpendicular to the flow line. However, the observed signal strength in these two directions differed from one another at each depth. It is also shown that the power reflection coefficient due to the variation of ice fabric with depth is of approximately the same order as that due to the density change and is large enough to produce the predominant internal radio-echo reflections.


1987 ◽  
Vol 9 ◽  
pp. 221-224 ◽  
Author(s):  
Minoru Yoshida ◽  
Kazunobu Yamashita ◽  
Shinji Mae

Extensive echo-sounding was carried out in east Dronning Maud Land during the 1984 field season. A 179 MHz radar with separate transmitting and receiving antennae was used and the echoes were recorded by a digital system to detect minute reflections. The results gave cross-sections of the ice sheet along traverse routes from lat. 69 °S. to 75°S, Detailed observations on the ground at Mizuho station showed that there was elliptical polarization in the internally reflected echoes when two antennae, kept in parallel with each other, were rotated horizontally. The internal echoes were most clearly distinguished when the antenna azimuth was oriented perpendicular to the flow line of the ice sheet. The internal echoes with a high reflection coefficient were detected at depths of 500–700 m and 1000–1500 m at Mizuho station. Since a distinct internal echo at a depth of 500 m coincides with a 5 cm thick volcanic ash-laden ice layer found in the 700 m ice core taken near the observation site, these echoes may correspond to the acidic ice layers formed by past volcanic events in east Dronning Maud Land.


1987 ◽  
Vol 9 ◽  
pp. 221-224
Author(s):  
Minoru Yoshida ◽  
Kazunobu Yamashita ◽  
Shinji Mae

Extensive echo-sounding was carried out in east Dronning Maud Land during the 1984 field season. A 179 MHz radar with separate transmitting and receiving antennae was used and the echoes were recorded by a digital system to detect minute reflections. The results gave cross-sections of the ice sheet along traverse routes from lat. 69 °S. to 75°S, Detailed observations on the ground at Mizuho station showed that there was elliptical polarization in the internally reflected echoes when two antennae, kept in parallel with each other, were rotated horizontally. The internal echoes were most clearly distinguished when the antenna azimuth was oriented perpendicular to the flow line of the ice sheet. The internal echoes with a high reflection coefficient were detected at depths of 500–700 m and 1000–1500 m at Mizuho station. Since a distinct internal echo at a depth of 500 m coincides with a 5 cm thick volcanic ash-laden ice layer found in the 700 m ice core taken near the observation site, these echoes may correspond to the acidic ice layers formed by past volcanic events in east Dronning Maud Land.


1979 ◽  
Vol 24 (90) ◽  
pp. 89-101 ◽  
Author(s):  
W. F. Budd ◽  
N. W. Young

AbstractIn order to determine accurate velocities of the ice sheet in the interior of Antarctica, approximately along a flow line, a detailed trilateration net was established in 1973 from the summit of Law Dome (100 km inland) to about 250 km south near the 2000 m contour. The net consisted of a double line of markers approximately 10 km apart with all sides and diagonals of the quadrilaterals measured with telluro-meters. In addition, satellite doppler survey positions and astronomical azimuths were determined at about 50 km intervals to control the net on the large scale. Other measurements carried out en route included: continuous barometric levelling, radio echo-sounding, gravimetry, accumulation, and surface sampling. The route was close to an earlier traverse route which reached Vostok in 1962 and along which other data, including snow-surface temperatures and temperature–depth gradients, were determined.The trilateration net was re-surveyed in 1975 allowing velocities and strain-rates to be determined. The results indicate that the ice sheet is close to balance in this region.Therefore, the measured velocities were used together with “balance velocities”, further inland, to carry out a modelling study of a flow line, to derive particle trajectories, ages, temperature profiles, and “dynamics velocities”, from a flow law. The results provide further insight into the dynamics and flow properties of the ice sheet.


1988 ◽  
Vol 11 ◽  
pp. 52-59 ◽  
Author(s):  
P. Huybrechts ◽  
J. Oerlemans

An efficient numerical ice-sheet model, including time dependence and full thermo-mechanical coupling, has been developed in order to investigate the thermal regime and overall configuration of a polar ice sheet with respect to changing environmental conditions. From basic sensitivity experiments, in which a schematic East Antarctic ice sheet is forced with a typical glacial–interglacial climatic shift, it is found that: (i) the mutual interaction of temperature and deformation has a stabilizing effect on its steady-state configuration; (ii) in the transient mode, this climatic transition initially leads to increased ice thickness due to enhanced accumulation, after which this trend is reversed due to a warmer base. Time-scales for this reversal are of the order of 103 years in marginal zones and of 104 years in interior regions; (iii) horizontal heat advection plays a major role in damping possible runaway behaviour due to the dissipation – strain-rate feed-back, suggesting that creep instability is a rather unlikely candidate to initiate surging of the East Antarctic ice sheet. The model is then applied to four East Antarctic flow lines. Only the flow line passing through Wilkes Land appears to be vulnerable to widespread basal melting, due to enhanced basal warming following climatic warming. Time-dependent modelling of the Vostok flow line indicates that the Vostok Station area has risen about 95 m since the beginning of the present interglacial due to thermo-mechanical effects, which is of particular interest in interpreting the palaeoclimatic signal of the ice core obtained there.


1988 ◽  
Vol 11 ◽  
pp. 52-59 ◽  
Author(s):  
P. Huybrechts ◽  
J. Oerlemans

An efficient numerical ice-sheet model, including time dependence and full thermo-mechanical coupling, has been developed in order to investigate the thermal regime and overall configuration of a polar ice sheet with respect to changing environmental conditions.From basic sensitivity experiments, in which a schematic East Antarctic ice sheet is forced with a typical glacial–interglacial climatic shift, it is found that: (i) the mutual interaction of temperature and deformation has a stabilizing effect on its steady-state configuration; (ii) in the transient mode, this climatic transition initially leads to increased ice thickness due to enhanced accumulation, after which this trend is reversed due to a warmer base. Time-scales for this reversal are of the order of 103 years in marginal zones and of 104 years in interior regions; (iii) horizontal heat advection plays a major role in damping possible runaway behaviour due to the dissipation – strain-rate feed-back, suggesting that creep instability is a rather unlikely candidate to initiate surging of the East Antarctic ice sheet.The model is then applied to four East Antarctic flow lines. Only the flow line passing through Wilkes Land appears to be vulnerable to widespread basal melting, due to enhanced basal warming following climatic warming. Time-dependent modelling of the Vostok flow line indicates that the Vostok Station area has risen about 95 m since the beginning of the present interglacial due to thermo-mechanical effects, which is of particular interest in interpreting the palaeoclimatic signal of the ice core obtained there.


1988 ◽  
Vol 10 ◽  
pp. 222
Author(s):  
Neal W. Young

The internal structure of the Law Dome ice cap is being investigated by studying ice cores obtained from several sites along the summit-Cape Folger line. Profiles of measured physical properties for four of the ice cores from near the margin of the ice cap are presented. A comparison of the profiles shows a gradual increase and then decrease in crystal size, and the development of strong crystal anisotropy in the upper half of the ice thickness. But in the lower part there is a complex multi-layer crystallographic structure, with an interleaving of ice which has markedly different physical properties. The development of the physical properties in the ice cores is discussed in terms of the deformation in the ice cap in the neighbourhood of the bore holes and the movement of the ice over the rough bedrock. The interdependence of the physical properties and the flow within the ice cap and their effect on other proxy records obtained from the ice cores are also explored. The Law Dome is a small ice cap, about 200 km in diameter, adjoining the main Antarctic ice sheet. It is being studied as a model ice cap, using surface surveys and ice-core drilling. It is large enough to have most of the features of larger ice sheets but small enough to be investigated in considerable detail. The four cores were drilled within 10 km of the coast at Cape Folger and lie approximately along a flow line. Each of the cores covers the Holocene and at least the later part of the Last Glacial Maximum. Two of the cores are within 40 m of bedrock and the remaining two, in thinner ice nearer the coast, are within a few metres of bedrock. Physical properties which were measured include: crystal size, texture and orientation; bubble size, orientation and distribution; and visible stratigraphy. The stratigraphy in the upper layers is related mainly to the occurrence of surface melting during the warmer months of the year. Additional supporting information is available from measurements of the physical properties on shallow cores up-stream of the four bore holes, from radio echo-sounding profiles and from other studies on the ice cores. This data is used in the discussion of the velocity field in the ice cap.


1979 ◽  
Vol 24 (90) ◽  
pp. 103-115 ◽  
Author(s):  
D. Raynaud ◽  
C. Lorius ◽  
W. F. Budd ◽  
N. W. Young

AbstractAn ice core has been obtained to the bedrock about 300 m deep in Terre Adélie, 5 km inland from the coast. Stable isotopes and gas content have been measured over the length of the core. The results have been interpreted in terms of the temperature and elevation of origin of the ice further inland on the ice sheet from the data obtained along an 800 km traverse towards Dome “C”, and from Dome “C”, at an elevation of about 3 200 m. The flow of the ice from Dome “C“ to the coast has been modelled to determine the ages and particle trajectories of the ice for present conditions.It has been found that the upper isotope and gas-content values in the core can be matched with the present regime using a base for ice flow above the present bed which is suggested by moraine in the ice core. The ice in the layer from the 200 m depth, where the age is apparently more than 5 000 years, to the 250 m depth, appears to have originated from conditions which differ substantially from those existing on the present inland ice-sheet surface. The results give an indication of a colder climate and greater ice-sheet thickness in the past.


2013 ◽  
Vol 54 (64) ◽  
pp. 44-50 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Dorthe Dahl-Jensen ◽  
S. Prasad Gogineni ◽  
John D. Paden

Abstract Radio-echo sounding surveys over the Greenland ice sheet show clear, extensive internal layering, and comparisons with age–depth scales from deep ice cores allow for dating of the layering along the ice divide. We present one of the first attempts to extend the dated layers beyond the ice core drill sites by locating the depth of the Bølling–Allerød transition in >400 flight-lines using an automated fitting method. Results show that the transition is located in the upper one-third of the ice column in the central part of North Greenland, while the transition lowers towards the margin. This pattern mirrors the present surface accumulation, and also indicates that a substantial amount of pre-Holocene ice must be present in central North Greenland.


Sign in / Sign up

Export Citation Format

Share Document