scholarly journals Finding the optimal compressor impeller material to improve the efficiency of the turbocharging system

2021 ◽  
Vol 1 (3) ◽  
pp. 87-94
Author(s):  
S.S. Rakhmatullin ◽  

Vehicles powered by diesel engines are equipped with superchargers in order to improve the ef-ficiency of vehicles. The efficiency of the turbochargers themselves partly depends on the optimum performance of their impellers, which in turn is achieved by choosing the right impeller materials. An important property of the material of the turbine wheel is heat resistance to the incoming exhaust gases, and for the compressor wheel it is the resistance to the pressure of the air simultaneously supplied to it and forced by it. In this paper, the issue of increasing the efficiency of the turbocharging system is considered in the context of comparing three materials (nickel and titanium alloys, structural steel), which are proposed for the manufacture of a compressor impeller by designing its model using computer software products. The measurements of real turbocharging elements and their characteristics are transferred to CREO, where the required dimensions are calculated and other necessary calculations are carried out, which are then imported into ANSYS for the purpose of subsequent research, in-cluding thermal and structural analyzes. Comparison of the analysis results allows us to conclude that the nickel alloy is superior to other materials under consideration in terms of its minimum sus-ceptibility to deformation and obtaining the lowest total heat flux in the compressor impeller, and to recommend this material for use in turbocharging or for its subsequent comparison with previously not considered materials, which, as suggested in the study, to some extent can contribute to an in-crease in the efficiency of the vehicle.

Author(s):  
Wei Liu ◽  
John Kovaleski ◽  
Marcus Hollis

Robotic assisted rehabilitation, taking advantage of neuroplasticity, has been shown to be helpful in regaining some degree of gait performance. Robot-applied movement along with voluntary efferent motor commands coordinated with the robot allows optimization of motion training. We present the design and characteristics of a novel foot-based 6-degree-of-freedom (DOF) robot-assisted gait training system where the limb trajectory mirrored the normal walking gait. The goal of this study was to compare robot-assisted gait to normal walking gait, where the limb moved independently without robotics. Motion analysis was used to record the three-dimensional kinematics of the right lower extremity. Walking motion data were determined and transferred to the robotic motion application software for inclusion in the robotic trials where the robot computer software was programmed to produce a gait pattern in the foot equivalent to the gait pattern recorded from the normal walking gait trial. Results demonstrated that ankle; knee and hip joint motions produced by the robot are consistent with the joint motions in walking gait. We believe that this control algorithm provides a rationale for use in future rehabilitation, targeting robot-assisted training in people with neuromuscular disabilities such as stroke.


Author(s):  
Ioannis Vlaskos ◽  
Ennio Codan ◽  
Nikolaos Alexandrakis ◽  
George Papalambrou ◽  
Marios Ioannou ◽  
...  

The paper describes the design process for a controlled pulse turbocharging system (CPT) on a 5 cylinder 4-stroke marine engine and highlights the potential for improved engine performance as well as reduced smoke emissions under steady state and transient operating conditions, as offered by the following technologies: • controlled pulse turbocharging, • high pressure air injection onto the compressor impeller as well as into the air receiver, and • an electronic engine control system, including a hydraulic powered electric actuator. Calibrated engine simulation computer models based on the results of tests performed on the engine in its baseline configuration were used to design the CPT components. Various engine tests with CPT under steady state and transient operating conditions show the engine optimization process and how the above-mentioned technologies benefit engine behavior in both generator and propeller law operation.


2011 ◽  
Vol 403-408 ◽  
pp. 2127-2130
Author(s):  
Chun Yan Liu ◽  
Zhu Lin Liu

With the computer software and technology continuously improving, because of various factors influencing, computer engineers are very tough on how to improve the quality of software products, this is a bottleneck problem we must solve. We think that the information engineering combining with the philosophy thought would make engineer’s ideas suddenly enlightened. We find a method and model to solve software engineering problems from the philosophical Angle, and put forward the importance of information philosophy in the study of information engineering by standing at this altitude of the information engineering. As a new field, information philosophy provides a unified, convergence theory frame, it can satisfy the requirement of further specialized. Information philosophy will become most exciting and productive philosophy research field in our era's.


Author(s):  
Anton Salnikov ◽  
Maxim Danilov

The high-loaded centrifugal compressor blisk-type impeller, one of the main low-sized gas-turbine engine components, strongly affects engine efficiency. However, its design is a time-consuming and complex task for several reasons, including its high loading, the large number of structural and technological constraints, and the variety of requirements needed for application to a gas-turbine engine centrifugal compressor impeller (e.g., increased efficiency and strength, minimized weight requirements, etc.). The imposition of several constraints for structure modification of the centrifugal wheels can improve one characteristic but can worsen others. The standard solution for this problem is to use an iterative approach, whereby the design process is reduced to a consistent set of impeller element design problem statements and decisions; these are separate for different analysis disciplines. The main drawbacks to this approach are that it is labor intensive and can cause deterioration of the design quality because this procedure does not consider the design object as a unit. The present work considers a centrifugal compressor wheel design approach based on the use of an integrated multidisciplinary parameterized 3D model. This model includes a number of specialized sub-models that describe the necessary design areas as well as physical process features and phenomena occurring in the designed object. The model also realizes the integration and interaction of sub-models used in an integrated computing space. The proposed approach allows the optimization of the structure based on several criteria, such as the mass of the wheel, stage efficiency, strength, economic indicators, etc. The result of multi-criteria optimization is not a single product design, but a set of optimal Pareto points, which describes a number of centrifugal wheel models. The optimal configuration is selected from this set, based on what is considered the most important criterion. Optimization criteria may vary depending on the problem formulation, but the design technology, parameterization scheme, and choice of multidisciplinary integrated mathematical model are retained. Therefore, in the case of a product requirement correction, a new optimal design will require less time. In aggregate, with the nonlinear constrained optimization application, this approach reduces the total time of the design cycle, decreases development costs, and improves quality.


Author(s):  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
G. D. Booth ◽  
G. D. Lock ◽  
W. N. Dawes

A numerical investigation of the flow and heat transfer characteristics of tip leakage in a typical film cooled industrial gas turbine rotor is presented in this paper. The computations were performed on a rotating domain of a single blade with a clearance gap of 1.28% chord in an engine environment. This standard blade featured two coolant and two dust holes, in a cavity-type tip with a central rib. The computations were performed using CFX 5.6, which was validated for similar flow situations by Krishnababu et al., [18]. These predictions were further verified by comparing the flow and heat transfer characteristics computed in the absence of coolant ejection with computations previously performed in the company (SIEMENS) using standard in-house codes. Turbulence was modelled using the SST k-ω turbulence model. The comparison of calculations performed with and without coolant ejection has shown that the coolant flow partially blocks the tip gap, resulting in a reduction of the amount of mainstream leakage flow. The calculations identified that the main detrimental heat transfer issues were caused by impingement of the hot leakage flow onto the tip. Hence three different modifications (referred as Cases 1 to 3) were made to the standard blade tip in an attempt to reduce the tip gap exit mass flow and the associated impingement heat transfer. The improvements and limitations of the modified geometries, in terms of tip gap exit mass flow, total area of the tip affected by the hot flow and the total heat flux to the tip, are discussed. The main feature of the Case 1 geometry is the removal of the rib and this modification was found to effectively reduce both the total area affected by the hot leakage flow and total heat flux to the tip while maintaining the same leakage mass flow as the standard blade. Case 2 featured a rearrangement of the dust holes in the tip which, in terms of aero-thermal-dynamics, proved to be marginally inferior to Case 1. Case 3, which essentially created a suction-side squealer geometry, was found to be inferior even to the standard cavity tip blade. It was also found that the hot spots which occur in the leading edge region of the standard tip and all modifications contributed significantly to the area affected by the hot tip leakage flow and the total heat flux.


2004 ◽  
Author(s):  
William M Pitts ◽  
Annageri V Murthy ◽  
John L deRis ◽  
Jean-Remy R Filtz ◽  
Kjell Nygard ◽  
...  

2016 ◽  
Vol 852 ◽  
pp. 568-574
Author(s):  
Karumanchi Vinay Prakash ◽  
R. Bakthavachalam ◽  
M. Senthil Kumar

This work studies the design of a fixture used in vibration sorting rig which is used for core balancing in turbo charger. The main objective of this paper is to design and optimize the fixture for holding the turbo chargers. To balance the core of turbo charger, turbine wheel and compressor wheel should balance which is turbine wheel is placed into the fixture. This paper analyzes the existing fixture and proposed new design. The fixture runs at higher speeds which is why we have to put the more concentration on the fixture design. The small issue in the fixture design results more problems due to high rotating speed of the turbine wheel of turbo charger. Many of the parts rejects due to poor fixture design. New fixture design is based on several aspects like design of work piece, rotating speed etc. The CFD analysis on the existing and proposed design is carried out. The results obtained were compared with existing fixture design.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhaoyu Yan ◽  
Wei Pan ◽  
Junjie Fang ◽  
Zihui Liu

Permafrost has been thawing faster due to climate change which would release greenhouse gases, change the hydrological regimes, affect buildings above, and so on. It is necessary to study the thawing process of frozen soil. A water-heat coupling model for frozen soil thawing is established on Darcy’s law and Heat Transfer in Porous Media interfaces in Comsol Multiphysics 5.5. Three curves of total liquid water volume, minimum temperature, and total heat flux in the thawing process are obtained from a numerical simulation. The distributions of liquid water, temperature, and pressure based on time are simulated too. The liquid water distribution is consistent with the total liquid water volume curve. The temperature distribution is confirmed by the minimum temperature and total heat flux curve. The pressure distribution represents ice in the frozen soil that generates negative pressure during the melting process. The numerical simulation research in this article deepens the understanding of the internal evolution in the process of frozen soil thawing and has a certain reference value for subsequent experimental research and related applications.


2003 ◽  
Vol 2003 (1) ◽  
pp. 1297-1302 ◽  
Author(s):  
Ian Buist ◽  
Steve Potter ◽  
Joe Mullin ◽  
Jim Lane ◽  
Dave Devitis ◽  
...  

ABSTRACT An enhanced propane underwater bubbler system designed to allow the testing of fire-resistant booms in flames was installed at Ohmsett in the fall of 1998 by the Minerals Management Service (MMS) and the US Navy Supervisor of Salvage and Diving (SUPSALV). The test is based on a screening protocol for testing fire resistant booms in waves and flames developed for MMS and the Canadian Coast Guard (CCG). The cornerstone of the test is an underwater bubbler system to create air-enhanced propane flames that produce an average total heat flux to the surface of a candidate containment system in the range of 110 to 130 kW/m2 and flame temperatures near the containment device on the order of 900°C. The candidate boom is stretched over the center of the bubbler, parallel to the long dimensions of the test tank, and tensioned to realistic towing forces. The fire exposure portion of the test involves three cycles of one hour of exposure to air-enhanced propane flames in waves, followed by a one-hour cool-down period in waves alone, and conforms to ASTM F 2152-01. Since the air-enhanced propane system was developed, 11 fire resistant boom systems have been tested. These include: three refractory fabric booms, one stainless steel boom, three water-cooled blanket prototypes, three reflective/insulating blanket prototypes, and one water-cooled boom. This paper summarizes the test methods used and the results.


Sign in / Sign up

Export Citation Format

Share Document