scholarly journals Parametric Study Of Friction Stir Spot Welding (FSSW) For Polymer Materials Case Of High Density Polyethylene Sheets: Experimental And Numerical Study

2020 ◽  
Vol 15 (55) ◽  
Author(s):  
Djilali Benyerou ◽  
El Bahri Ould Chikh ◽  
Habib Khellafi ◽  
Hadj Miloud Meddah ◽  
Ali Benhamena ◽  
...  

Friction stir spot welding (FSSW) is a very important part of conventional friction stir welding (FSW) which can be a replacement for riveted assemblies and resistance spot welding. This technique provides high quality joints compared to conventional welding processes. Friction stir spot welding (FSSW) is a new technology adopted to join various types of metals such as titanium, aluminum, magnesium. It is also used for welding polymer materials which are difficult to weld by the conventional welding process. In various industrial applications, high density polyethylene (HDPE) becomes the most used material. The parameters and mechanical properties of the welds are the major problems in the welding processes. In this paper, we have presented a contribution in finite element modeling of the friction stir spot welding process (FSSW) using Abaqus as a finite element solver. The objective of this paper is to study the HDPE plates resistance of stir spot welding joints (FSSW). First, we show the experimental tests results of high-density polyethylene (HDPE) plates assembled by friction stir spot welding (FSSW). Three-dimensional numerical modeling by the finite element method makes it possible to determine the best representation of the weld joint for a good prediction of its behavior. Comparison of the results shows that there is a good agreement between the numerical modeling predictions and the experimental results.

2021 ◽  
pp. 009524432110015
Author(s):  
Mustafa Kemal Bilici

In this study, two different polymer materials were used. In the joints made with friction stir spot welding, firstly (PP/PP and HDPE/HDPE) and then different materials (PP/HDPE, HDPE/PP) joining processes were carried. The influence of the tool rotational speed and the stirring time on joint formation and weld strength were determined. The temperature of the liquid welding materials varies according to the materials to be combined. High weld strengths were obtained at the friction stir spot welding of similar plastic sheets. The highest weld strengths were obtained in PP-PP welds. Low weld strengths were obtained at the friction stir spot welding of dissimilar plastic sheets because of immiscible and incompatible blends formed during the welding operation. The lowest weld strengths were obtained in PP-HDPE welds. The chemical composition and the phase morphology of the blends, the mechanical scission occurrence and the welding residual stresses determine the strength of the welds.


2016 ◽  
Vol 860 ◽  
pp. 49-52 ◽  
Author(s):  
Munir Tasdemir ◽  
Mustafa Kemal Bilici ◽  
Mehmet Kurt

In the present study, we attempt to use powder of glass spheres filler and reinforce material in HDPE to produce composite structure and then evaluate its mechanical properties to study the effect of welding parameters and filler content on mechanical properties of HDPE. The effect of welding parameters (tool rotational speed, the plunge depth and the dwell time) on friction stir spot welding properties of high density polyethylene/glass spheres (hollow) polymer composites sheets was studied.


2009 ◽  
Vol 83-86 ◽  
pp. 1220-1227
Author(s):  
Gianluca Buffa ◽  
Livan Fratini

Spot welding can be considered a very common joining technique in automotive and transportation industries as it permits to obtain effective lap-joints with short process times and what is more it is easily developed through robots and automated systems. Recently the Friction Stir Spot Welding (FSSW) process has been proposed as a natural evolution of the already known Friction Stir Welding (FSW) process, allowing to obtain sound spot joints that do not suffer from the insurgence of typical welding defects due to the fusion of the base material. In the paper, a modified Friction Stir Spot Welding (FSSW) process, with a spiral circular movement given to the tool after the sinking stage, is proposed. A continuum based numerical model for Friction Stir Spot Welding process is developed, that is 2D Lagrangian implicit, coupled, rigid-viscoplastic. This model is used to investigate the distribution of the main field variables, namely temperature, strain and strain rate, as well as the Zener-Hollomon parameter which, in turn, strongly affects the Continuous Dynamic Recrystallization (CDRX) process that takes place in the weld nugget. Numerical and experimental results are presented showing the effects of the process parameters on the joint performances and the mechanical effectiveness of the modified process.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Karunakaran D ◽  
Venkatachalapathy VSK

Welding is one of the best and quick process to join metals. In modern times, we concern more about environmental hazards due to hazardous gases liberated during conventional welding processes. Fiction Stir welding is a simple process in which a solid metal joint is produced by the heat of friction. In a similar technique, we can make spot welds of similar or dissimilar metallic joints by using Friction Stir Spot Welding. Since there is an absence of any liberation of poisonous gases, this method is safe to the environment and user. In this study, we made a dissimilar lap joint of Copper and Aluminium strips using an H13 steel tool. The pin profile of the tool is based on the thickness of the plate/weld. Weld based process parameters such as tool rotational speed, Dwell time and plunge depth. A lap joint with a desirable overlapping length between friction weld spots is compared and analyzed for mechanical bonding strength for both single and double joints. The results show a considerable increase in tensile strength for double-jointed specimen compared to a single-joint.


2021 ◽  
pp. 009524432110588
Author(s):  
Mustafa Kemal Bilici

Modern thermoplastic materials are used in an expanding range of engineering applications, such as in the automotive industry, due to their enhanced stress-to-weight ratios, toughness, a very short time of solidification, and a low thermal conductivity. Recently, friction stir welding has started to be used in joining processes in these areas. There are many factors that affect weld performance and weld quality in friction stir welding (FSW). These factors must be compatible with each other. Due to the large number of welding variables in friction stir welding processes, it is very difficult to achieve high strength FSW joints, high welding performance, and control the welding process. Welding variables that form the basis of friction stir welding; machine parameters, tool variables, and material properties are divided into three main groups. Each welding variable has different effects on the weld joint. In this study, friction stir welds were made on high density polyethylene (HDPE) sheets with factors selected from machine parameters and welding tool variables. Although the welding performance, quality, and strength gave good results in some conditions, successful joints could not be realized in some conditions. In particular, welding defects occurring in the combination of HDPE material with FSW were investigated. Welding quality, defects, and performances were examined with macrostructure. In addition, the tensile strength values of some the joints were determined. The main purpose of this study is to determine the welding defects that occur at the joints. The causes of welding defects, prevention methods, and which weld variables caused were investigated. Welding parameters and welding defects caused by welding tools were examined in detail. In addition, the factors causing welding defects were changed in a wide range and the changes in the defects were observed.


Author(s):  
Jamal Sheikh-Ahmad ◽  
Dima Ali ◽  
Firas Jarrar ◽  
Suleyman Deveci

Friction stir welding of high density polyethylene sheets was performed at different rotational and welding speeds and the material temperature close to the welding zone was monitored by infrared thermography and thermocouple measurements. Welding quality was evaluated by macrostructure analysis and tensile testing. Fracture surfaces of the tensile specimens were also analyzed. It was found that weld quality is highly dependent on the temperature of the material in the welding zone. For some specific welding conditions the welding process was unstable due to elevated temperatures reaching the melting point of HDPE. Instability of the welding processes was characterized by cyclic material temperatures and down forces. Decreasing the welding speed and increasing the rotational speed was found to improve weld quality.


Author(s):  
Chaitanya Sharma ◽  
Ajay Tripathi ◽  
Vikas Upadhyay ◽  
Vijay Verma ◽  
Sumit K. Sharma

Sign in / Sign up

Export Citation Format

Share Document