By-products as an amendment of a mine soil: effects on microbial biomass determined using phospholipid fatty acids

2018 ◽  
Vol 8 ◽  
Author(s):  
Vanesa Santás-Miguel ◽  
Laura Cutillas-Barreiro ◽  
Juan Carlos Nóvoa-Muñoz ◽  
Manuel Arias-Estévez ◽  
Montserrat Díaz-Raviña ◽  
...  

In the present work, the effect of two by-products (pine bark and crushed mussel shell) on microbial biomass and community structure was studied in a soil from a mine tailing located in a copper mine. In a laboratory experiment, different doses (0, 12, 24, 48, 96 and 192 Mg ha<sup>-1</sup>) of pine bark, crushed mussel shell or mixtures of both by-products were added to the soil. The amended soil samples were incubated for one year at 60% of water holding capacity, and then 33 phospholipid fatty acids (PLFAs) were extracted from these samples and quantified. The PLFAs concentrations were used for different microbial biomass estimations: total biomass, bacterial biomass, fungal biomass, gram-positive (G+) biomass and gram-negative (G-) biomass. The addition of crushed mussel had no significant effects on the total soil microbial biomass, either bacterial of fungal biomass. However, the addition of pine bark increased the total microbial biomass in the soil (up to 40%), mainly due to increases in the fungal biomass (it increased 1600%). No synergistic effects were observed when the soil was amended with both, pine bark and crushed mussel shell. The main community structure changes were due to the addition of pine bark to the soil, and were also due to modifications in fungal communities. Our results suggest that the microbial biomass was mainly limited in the mine soil by low organic matter concentrations, and therefore, practices increasing the amount of soil organic matter should be priorities for soil reclamation.

2017 ◽  
Vol 37 (23) ◽  
Author(s):  
蓝丽英 LAN Liying ◽  
寥蓉 LIAO Rong ◽  
杨万勤 YANG Wanqin ◽  
吴福忠 WU Fuzhong ◽  
杨帆 YANG Fan ◽  
...  

In sediments and soils the extant microbiota that can be counted by direct microscopy have proved exceedingly difficult to isolate and culture. Classical tests are time consuming and provide little indication of the interactions within the community, the community nutritional status or metabolic activity. The in situ method is based on the extraction of ‘signature’ lipid biomarkers (SLB) from the cell membranes and walls of microorganisms. Lipids are cellular components that are recoverable by extraction with organic solvents. Lipids are an essential component of the membrane of all cells and play a role as storage materials. Extraction of the lipid components of the microbiota from soils and sediments provides both purification and concentration together with an in situ quantitative analysis of the microbial biomass, community structure, and nutritional status. The determination of the total phospholipid ester-linked fatty acids (PLFA) provides a quantitative measure of the viable biomass. Viable microbes have an intact membrane which contains phospholipids (and PLFA). With cell death enzymes hydrolyze the phosphate group within minutes to hours. The lipid core remains as diglyceride (DG). The resulting DG has the same signature fatty acids as the phospholipids (until it degrades) so a comparison of the ratio of PLFA to DG provides an indication of the viable and nonviable microbes. Analysis by SLB technique provides a quantitative definition of the microbial community structure as specific groups of microbes contain characteristic PLFA patterns. The analysis of other lipids such as the sterols (for the microeukaryotes -nematodes, algae, protozoa), glycolipids (for the phototrophs, gram-positive bacteria), or the hydroxy fatty acids in the lipopolysaccharide of the lipid A (gramnegative bacteria) can provide more detailed community structure analysis. The formation of poly (3-hydroxyalkanoic acid (PHA) in bacteria or triglyceride (TG) in the microeukaryotes relative to the PLFA provides a measure of the nutritional status. Bacteria grown with adequate carbon and terminal electron acceptors form PHA when they cannot divide, because some essential component is missing. Rates of incorporation of 14 C-acetate into PHA relative to PLFA is a sensitive indicator of disturbance artifacts in estimates of metabolic activity in sediments with redox gradients. Exposure to toxic environments can lead to minicell formation and increases in specific PLFAS. Respiratory quinone structure indicates the proportions of aerobic/anaerobic activities in the community. The SLB technology provides quantitative in situ information that define the microbial ecology in sedimentary geochemical processes.


Radiocarbon ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 1215-1223 ◽  
Author(s):  
Ellen R M Druffel ◽  
Dachun Zhang ◽  
Xiaomei Xu ◽  
Lori A Ziolkowski ◽  
John R Southon ◽  
...  

We report compound-specific radiocarbon analyses of organic matter in ocean sediments from the northeast Pacific Ocean. Chemical extractions and a preparative capillary gas chromatograph (PCGC) were used to isolate phospholipid fatty acids (PLFA) and n-alkanes from 3 cores collected off the coast of California, USA. Mass of samples for accelerator mass spectrometry (AMS) 14C analysis ranged from 13–100 μg C. PLFA extracted from anaerobic sediments in the Santa Barbara Basin (595 m depth) had modern Δ14C values (–20 to +54‰), indicating bacterial utilization of surface-produced, post-bomb organic matter. Lower Δ14C values were obtained for n-alkanes and PLFA from coast (92 m depth) and continental slope (1866 m) sediments, which reflect sources of old organic matter and bioturbation. We present a brief analysis of the blank carbon introduced to samples during chemical processing and PCGC isolation.


Sign in / Sign up

Export Citation Format

Share Document