scholarly journals A STUDY ON OFFICE PAPER PRODUCTION FROM PRIMARY AND SECONDARY FIBERS

2021 ◽  
Vol 5 (2) ◽  
pp. 433-444
Author(s):  
Mustafa ÇİÇEKLER ◽  
Ahmet TUTUŞ
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 527
Author(s):  
Marica Starešinič ◽  
Bojana Boh Podgornik ◽  
Dejana Javoršek ◽  
Mirjam Leskovšek ◽  
Klemen Možina

Invasive alien plant species (IAPS) are one of the biggest challenges in European ecosystems, displacing local vegetation, destroying agricultural land, and causing billions of dollars of damage to the European economy every year. Many of them are removed daily and mainly burned. In this work, we investigated the possibilities of using plants as feedstock for paper production. Papers made from three invasive alien plants, i.e., Knotweed, Goldenrod, and Black locust, were studied and compared with commercial office paper. The study included testing of: (1) structural properties—basic physical properties, grammage, thickness, density and specific volume, moisture content, and ash content; (2) physical and dynamic mechanical properties—tensile strength, Clark stiffness, viscoelastic properties; (3) colorimetric properties of prints; (4) effect of UV light on ageing; and (5) study of cellulose fiber structure and morphology by microscopy. The results suggested that the paper produced can be used as commercial office paper, considering that the paper is slightly dyed. Such papers can also be used for special purposes that present a natural style and connection to nature. The papers produced can also be used for printing documents that are meant to be kept.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (4) ◽  
pp. 19-27
Author(s):  
PATRICK HUBER ◽  
LAURENT LYANNAZ ◽  
BRUNO CARRÉ

The fraction of deinked pulp for coated paper production is continually increasing, with some mills using 100% deinked pulp for the base paper. The brightness of the coated paper made from deinked pulp may be reached through a combination of more or less extensive deinking, compensated by appropriate coating, to optimize costs overall. The authors proposed general optimization methods combined with Kubelka-Munk multilayer calculations to find the most economical combination of deinking and coating process that would produce a coated paper made from DIP, at a given target brightness, while maintaining mechanical properties.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (11) ◽  
pp. 37-43 ◽  
Author(s):  
LIISA KOTANEN ◽  
MIKA KÖRKKÖ ◽  
ARI ÄMMÄLÄ ◽  
JOUKO NIINIMÄKI

The use of recovered paper as a raw material for paper production is by far the most economical and ecological strategy for the disposal of waste paper. However, paper production from recovered paper furnish generates a great amount of residues, and the higher the demand requirements for the end product, the higher the amount of rejected material. The reason for this is that the selectivity of the deinking process is limited; therefore, some valuable components are also lost in reject streams. The rejection of usable components affects the economics of recycled paper production. As the cost of waste disposal continues to increase, this issue is becoming more and more severe. This paper summarizes the current state of the resource efficiency in recycled pulp production and provides information on the volumes of rejected streams and the usable material within them. Various means to use these reject streams are also discussed, including the main findings of a recent thesis by the main author. This review summarizes current internal and external use of reject streams generated in the deinking operations.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (3) ◽  
pp. 167-174 ◽  
Author(s):  
QIANQIAN WANG ◽  
J.Y. ZHU

Mixed office paper (MOP) pulp without deinking with an ash content of 18.1 ± 1.5% was used as raw material to produce nanofiller-paper. The MOP pulp with filler was mechanically fibrillated using a laboratory stone grinder. Scanning electron microscope imaging revealed that the ground filler particles were wrapped by cellulose nanofibrils (CNFs), which substantially improved the incorporation of filler into the CNF matrix. Sheets made of this CNF matrix were densified due to improved bonding. Specific tensile strength and modulus of the nanofiller-paper with 60-min grinding reached 48.4 kN·m/kg and 8.1 MN·m/kg, respectively, approximately 250% and 200% of the respective values of the paper made of unground MOP pulp. Mechanical grinding duration did not affect the thermal stability of the nanofiller-paper.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


Sign in / Sign up

Export Citation Format

Share Document