scholarly journals LoRaWAN Based Manhole Cover Monitoring System

2021 ◽  
Author(s):  
Aman Kumar Tiwari ◽  
Priyanka Chaudhari ◽  
Shardul Pattewar ◽  
Rohini Deshmukh

An on-line monitoring system using LoRa based wireless technology for manhole cover is proposed. The system includes sensor sensing nodes, LoRaWAN network and application. LoRaWAN based IoT has very low power consumption for long-distance transmission. We use the accelerometer sensor to monitor the position, displacement or damage of manhole covers used in sewage systems. If these covers are moved or damaged, then LoRa board alerts the authorities LoRa gateway. The gateway is connected to The Things Network (TTN), a cloud-based crowd-funded open source LoRaWAN platform. The data is uploaded to the cloud and stored, and it will alert to the maintenance department. On TTN, our application will be launched and integrated with different features such as SMS.

2013 ◽  
Vol 753-755 ◽  
pp. 2369-2373
Author(s):  
Yu Xuan Hu ◽  
Yi Hu ◽  
Shu Ming Ye ◽  
Xiao Xiang Zheng

As a major indicator of Obstructive Sleep Apnea Syndrome (OSAS) in clinical diagnosis, the monitoring of sleep apnea plays an important role in medical treatments of modern society. This paper proposes a portable sleep apnea monitoring system, which is of high-precision and low-power consumption, and capable of performing the long-term monitoring of OSAS patients multiple physiological parameters in clinical treatments. In the system, the AC modulated detection is adopted, and low amplification ratios are utilized in forestage and a high-resolution AD converter is designed in post-stages. Thus, it is able to acquire, analyze, and process physiological signals in real-time. In addition, ultralow-power chips are used in control system to save the power consumption. The experimental results show that our monitoring system has the strengths of high stability, low-power consumption (peak current90mA), and strong anti-interference ability, which demonstrates the potential in practical applications.


2012 ◽  
Vol 198-199 ◽  
pp. 1603-1608
Author(s):  
Qing Hua Shang ◽  
Ping Liu

Wireless technology has walked into the People's Daily life, Bluetooth technology comes to the fore in so many wireless technologies with its low power consumption, low cost and other characteristics. Bluetooth technology is used widely, we can see it in mobile phones or in our cars, it seems that Bluetooth technology has penetrated into every aspect of our lives. Even so, the combination of Bluetooth technology and fixed telephone still has a very big development space. If the stability of the fixed telephone combined with the flexible of Bluetooth technology, it will give the life of people a lot of convenience. This paper will introduces the Bluetooth hands free system for fixed telephone, it is such a product that it will make Bluetooth technology and common fixed phone combined, and make it a reality that people can use common Bluetooth headset to answer or call a fixed telephone.


2019 ◽  
Vol 8 (2) ◽  
pp. 32 ◽  
Author(s):  
Ali Al-Naji ◽  
Ali J. Al-Askery ◽  
Sadik Kamel Gharghan ◽  
Javaan Chahl

Continuous monitoring of breathing activity plays a major role in detecting and classifying a breathing abnormality. This work aims to facilitate detection of abnormal breathing syndromes, including tachypnea, bradypnea, central apnea, and irregular breathing by tracking of thorax movement resulting from respiratory rhythms based on ultrasonic radar detection. This paper proposes a non-contact, non-invasive, low cost, low power consumption, portable, and precise system for simultaneous monitoring of normal and abnormal breathing activity in real-time using an ultrasonic PING sensor and microcontroller PIC18F452. Moreover, the obtained abnormal breathing syndrome is reported to the concerned physician’s mobile telephone through a global system for mobile communication (GSM) modem to handle the case depending on the patient’s emergency condition. In addition, the power consumption of the proposed monitoring system is reduced via a duty cycle using an energy-efficient sleep/wake scheme. Experiments were conducted on 12 participants without any physical contact at different distances of 0.5, 1, 2, and 3 m and the breathing rates measured with the proposed system were then compared with those measured by a piezo respiratory belt transducer. The experimental results illustrate the feasibility of the proposed system to extract breathing rate and detect the related abnormal breathing syndromes with a high degree of agreement, strong correlation coefficient, and low error ratio. The results also showed that the total current consumption of the proposed monitoring system based on the sleep/wake scheme was 6.936 mA compared to 321.75 mA when the traditional operation was used instead. Consequently, this led to a 97.8% of power savings and extended the battery life time from 8 h to approximately 370 h. The proposed monitoring system could be used in both clinical and home settings.


2017 ◽  
Vol 13 (12) ◽  
pp. 104 ◽  
Author(s):  
Kun Wang

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: DE; mso-bidi-language: AR-SA;">At present, the common meter reading method in gas meter reading system is manual. The meter reader enters the meter reading system to calculate the cost after getting the reading. This work is not only labour-intensive, but also inefficient. In addition, incorrect reading may occur due to human errors. With the development of the wireless communication technology, a wireless communication technology named LoRa for long-distance and low-power-consumption devices appeared. LoRa is a wireless communication technology with long transmission distance, low power consumption, low transmission speed, low complexity and low cost. It is mainly used in automatic control and internet of things. Through the comparison and analysis of several wireless communication technologies, a gas meter reading platform based on LoRa spread spectrum and wireless sensors is proposed. First of all, this paper briefly introduces the LoRa wireless communication technology and machine vision technology. Secondly, it gives a detailed introduction to the overall design of the system which includes system architecture design, information acquisition terminal, image acquisition module and wireless sensor module. Finally, an experiment is carried out in a residential area. The results show that the gas meter reading platform based on LoRa and wireless sensor network has a high practical value.</span>


Sign in / Sign up

Export Citation Format

Share Document