The diagnostic performance of shear wave velocity ratio for the differential diagnosis of benign and malignant breast lesions: Compared with VTQ, and mammography

Author(s):  
Li-Chang Zhong ◽  
Tian Yang ◽  
Li-Ping Gu ◽  
Fang Ma

PURPOSE: To evaluate the diagnostic value of shear wave velocity (SWV) ratio for the differential diagnosis of benign and malignant breast lesions. MATERIAL AND METHODS: Our retrospective study included 151 breast lesions that were diagnosed by biopsy and surgical pathology. All of the breast lesions were detected by conventional ultrasound and Virtual Touch tissue quantification (VTQ) and mammography. The sonographic characteristics of the breast lesion, such as the internal echo, shape, margin, color flow, and calcification so on, were also observed. The SWV in lesions and surrounding parenchyma were measured and the SWV ratio between the lesion and surrounding parenchyma was calculated. Pathological results were used as a diagnosis standard to compare the value of SWV ratio, VTQ, and mammography in the diagnosis of benign and malignant breast lesions. RESULTS: The 151 breast lesions included 96 benign lesions and 55 malignant lesions. The cutoff value of VTQ in the diagnosis of benign and malignant breast lesions was 5.01 m/s, of SWV ratio was 2.43, and mammography was BI-RADS 4B. The sensitivity, specificity, accuracy and the area under the ROC curve (AUC) of the SWV ratio were 78.2%, 86.5%, 83.4%, and 0.83 respectively. While of SWV ratio with mammography was 86.4%, 89.4%, 88.3% and 0.87, respectively. The sensitivity, specificity, accuracy, and AUC of SWV ratio and SWV ratio with mammography were statistically higher than those of mammography, no statistically higher than VTQ and VTQ with mammography. CONCLUSION: The SWV ratio can improve the sensitivity without sacrificing diagnostic specificity in the process of breast cancer diagnostic, provide a better diagnostic performance, and avoid unnecessary biopsy or surgery.

Author(s):  
Roaa M. A. Shehata ◽  
Mostafa A. M. El-Sharkawy ◽  
Omar M. Mahmoud ◽  
Hosam M. Kamel

Abstract Background Breast cancer is the most common life-threatening cancer in women worldwide. A high number of women are going through biopsy procedures for characterization of breast masses every day and yet 75% of the pathological results prove these masses to be benign. Ultrasound (US) elastography is a non-invasive technique that measures tissue stiffness. It is convenient for differentiating benign from malignant breast tumors. Our study aims to evaluate the role of qualitative ultrasound elastography scoring (ES), quantitative mass strain ratio (SR), and shear wave elasticity ratio (SWER) in differentiation between benign and malignant breast lesions. Results Among 51 female patients with 77 histopathologically proved breast lesions, 57 breast masses were malignant and 20 were benign. All patients were examined by B-mode ultrasound then strain and shear wave elastographic examinations using ultrasound machine (Logiq E9, GE Medical Systems) with 8.5–12 MHz high-frequency probes. Our study showed that ES best cut-off point > 3 with sensitivity, specificity, PPV, NPP, accuracy was 94.7%, 85%, 94.7%, 85%, 90.9%, respectively, and AUC = 0.926 at P < 0.001, mass SR the best cut-off point > 4.6 with sensitivity, specificity, PPV, NPP, accuracy was 96.5%, 80%, 93.2%, 88.9%, 92.2%, respectively, and AUC = 0.860 at P < 0.001, SWER the best cut-off value > 4.9 with sensitivity, specificity, PPV, NPP and accuracy was 91.2%, 80%, 92.9%, 76.2%, 93.5%, respectively, and AUC = 0.890 at P < 0.001. The mean mass strain ratio for malignant lesions is 10.1 ± 3.7 SD and for solid benign lesions 4.7 ± 4.3 SD (p value 0.001). The mean shear wave elasticity ratio for malignant lesions is 10.6 ± 5.4 SD and for benign (solid and cystic) lesions 3.6 ± 4.2 SD. Using ROC curve and Youden index, the difference in diagnostic performance between ES, SR and SWER was not significant in differentiation between benign and malignant breast lesions and also was non-significant difference when comparing them with conventional US alone. Conclusion ES, SR, and SWER have a high diagnostic performance in differentiating malignant from benign breast lesions with no statistically significant difference between them.


Author(s):  
Vito Cantisani ◽  
Emanuele David ◽  
Richard G. Barr ◽  
Maija Radzina ◽  
Valeria de Soccio ◽  
...  

Abstract Purpose To evaluate the diagnostic performance of strain elastography (SE) and 2 D shear wave elastography (SWE) and SE/SWE combination in comparison with conventional multiparametric ultrasound (US) with respect to improving BI-RADS classification results and differentiating benign and malignant breast lesions using a qualitative and quantitative assessment. Materials and Methods In this prospective study, 130 histologically proven breast masses were evaluated with baseline US, color Doppler ultrasound (CDUS), SE and SWE (Toshiba Aplio 500 with a 7–15 MHz wide-band linear transducer). Each lesion was classified according to the BIRADS lexicon by evaluating the size, the B-mode and color Doppler features, the SE qualitative (point color scale) and SE semi-quantitative (strain ratio) methods, and quantitative SWE. Histological results were compared with BIRADS, strain ratio (SR) and shear wave elastography (SWE) all performed by one investigator blinded to the clinical examination and mammographic results at the time of the US examination. The area under the ROC curve (AUC) was calculated to evaluate the diagnostic performance of B-mode US, SE, SWE, and their combination. Results Histological examination revealed 47 benign and 83 malignant breast lesions. The accuracy of SR was statistically significantly higher than SWE (sensitivity, specificity and AUC were 89.2 %, 76.6 % and 0.83 for SR and 72.3 %, 66.0 % and 0.69 for SWE, respectively, p = 0.003) but not higher than B-mode US (B-mode US sensitivity, specificity and AUC were 85.5 %, 78.8 %, 0.821, respectively, p = 1.000). Conclusion Our experience suggests that conventional US in combination with both SE and SWE is a valid tool that can be useful in the clinical setting, can improve BIRADS category assessment and may help in the differentiation of benign from malignant breast lesions, with SE having higher accuracy than SWE.


2019 ◽  
Vol 9 ◽  
pp. 36
Author(s):  
Hashim A. Hashim ◽  
Mustafa Z. Mahmoud ◽  
Batil Alonazi ◽  
Hassan Aldosary ◽  
Jameelah S. Alrashdi ◽  
...  

Objective: The aim of the study was to identify the pathological characteristics of benign and malignant breast lesions among Saudi females using brightness mode (B-mode) and color Doppler ultrasound (US). Materials and Methods: This study was retrospectively carried out in a single center in the Radiology and Medical Imaging Department, King Fahad Medical City, Riyadh, Saudi Arabia. A convenient method of sampling was used to include all patients referred for different diagnosis during the period of January 2016 and December 2018. A sample size of 100 cases was selected with 50% of the cases being benign breast lesions, while the rest were malignant. The data collection instruments comprised data collection sheets, while a Philips US system with a 9 MHz linear probe was used to give the differential results. The results were considered significant when P < 0.05. The statistical diagnostic test was used to detect sensitivity, specificity, and accuracy of US in the differential diagnosis of breast lesions in Saudi females. Results: B-mode and color Doppler US findings of breast mass measurements, shape, echotexture, and the presence and absence of vascularity present a sensitivity, specificity, and accuracy of 97.09%, 80.65%, and 93.28% in the diagnosis of benign and malignant breast masses. Conclusion: In Saudi females with dense breasts, the risk of breast cancer development is increased. Moreover, B-mode in combination with color Doppler US was highly determined the results of differential diagnosis for any breast lesions.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hui Yang ◽  
Yongyuan Xu ◽  
Yanan Zhao ◽  
Jing Yin ◽  
Zhiyi Chen ◽  
...  

Abstract Background Elastography is a promising way to evaluate tissue differences regarding stiffness, and the stiffness of the malignant breast lesions increased at the lesion margin. However, there is a lack of data on the value of the shear wave elastography (SWE) parameters of the surrounding tissue (shell) of different diameter on the diagnosis of benign and malignant breast lesions. Therefore, the purpose of our study was to evaluate the diagnostic performance of shell elasticity in the diagnosis of benign and malignant breast lesions using SWE. Methods Between September 2016 and June 2017, women with breast lesions underwent both conventional ultrasound (US) and SWE. Elastic values of the lesions peripheral tissue were determined according to the shell size, which was automatically drawn along the edge of the lesion using the following software guidelines: (1): 1 mm; (2): 2 mm; and (3): 3 mm. Quantitative elastographic features of the inner lesions and shell, including the elasticity mean (Emean), elasticity maximum (Emax), and elasticity minimum (Emin), were calculated using an online-available software. The receiver operating characteristic curves (ROCs) of the elastographic features was analyzed to assess the diagnostic performance, and the area under curve (AUC) of each elastographic feature was obtained. Logistic regression analysis was used to predict significant factors of malignancy, permitting the design of predictive models. Results This prospective study included 63 breast lesions of 63 women. Of the 63 lesions, 33 were malignant and 30 were benign. The diagnostic performance of Emax-3shell was the highest (AUC = 0.76) with a sensitivity of 60.6% and a specificity of 83.3%. According to stepwise logistic regression analysis, the Emax-3shell and the Emin-3shell were significant predictors of malignancy (p < 0.05). The AUC of the predictive equation was 0.86. Conclusions SWE features, particularly the combination of Emax-3shell and Emin-3shell can improve the diagnosis of breast lesions.


Author(s):  
E. A. Gudilina ◽  
T. Yu. Danzanova ◽  
P. I. Lepedatu ◽  
G. T. Sinyukova

Purpose: Determination of informative value of a new method of ultrasound tomography, based on the properties of elasticity of soft tissues, in the differential diagnosis of metastatic lesions of the lymph nodes of the neck thyroid cancer.Material and methods: To assess the capabilities of shear wave ultrasound elastometry in the diagnosis of metastatic lesions of the lymph nodes in thyroid cancer, a study was carried out with 45 patients with suspected thyroid cancer. The work was performed by devices Acuson S2000 Siemens, Avius hi vision Hitachi using a linear sensor with a frequency of 5–12 MHz. For each object of the study, from 5 to 10 measurements of the shear wave velocity in m / s were made, depending on the size of the lymph nodes.Results: Reliable results were obtained in the group of altered lymph nodes (statistical significance p < 0.05). Interquartile intervals and the most common values of shear wave velocities do not overlap: in metastases — 2.20– 3.36 m/s, with hyperplasia of lymph nodes — 0.70–1.88 m/s, and medians show a significant difference in velocities: metastases — 3.00 m/s, hyperplastic lymph nodes 1.38 m/s.Conclusions: Shear wave elastography objectifies ultrasound studies, obtaining specific indicators of shear wave velocity in the areas of interest, and can be used as an additional diagnostic tool in the differential diagnosis of metastatic and hyperplastic lymph nodes.


2020 ◽  
pp. 028418512096142
Author(s):  
Yasemin Altıntas ◽  
Mehmet Bayrak ◽  
Ömer Alabaz ◽  
Medih Celiktas

Background Ultrasound (US) elastography has become a routine instrument in ultrasonographic diagnosis that measures the consistency and stiffness of tissues. Purpose To distinguish benign and malignant breast masses using a single US system by comparing the diagnostic parameters of three kinds of breast elastography simultaneously added to B-mode ultrasonography. Material and Methods A total of 163 breast lesions in 159 consecutive women who underwent US-guided core needle biopsy were included in this prospective study. Before the biopsy, the lesions were examined with B-mode ultrasonography and strain (SE), shear wave (SWE), and point shear wave (STQ) elastography. The strain ratio was computed and the Tsukuba score determined. The mean elasticity values using SWE and STQ were computed and converted to Young’s modulus E (kPa). Results All SE, SWE, and STQ parameters showed similar diagnostic performance. The SE score, SE ratio, SWEmean, SWEmax, STQmean, and STQmax yielded higher specificity than B-mode US alone to differentiate benign and malignant masses. The sensitivity of B-mode US, SWE, and STQ was slightly higher than that of the SE score and SE ratio. The SE score, SE ratio, SWEmean, SWEmax, STQmean, and STQmax had significantly higher positive predictive value and diagnostic accuracy than B-mode US alone. The area under the curve for each of these elastography methods in differentiating benign and malignant breast lesions was 0.93, 0.93, 0.98, 0.97, 0.98, and 0.96, respectively; P<0.001 for all measurements. Conclusion SE (ratio and score), SWE, and STQ had higher diagnostic performance individually than B-mode US alone in distinguishing between malignant and benign breast masses.


2020 ◽  
Vol 15 (1) ◽  
pp. 59-64
Author(s):  
E. V. Kovaleva ◽  
T. Yu. Danzanova ◽  
G. T. Sinyukova ◽  
E. A. Gudilina ◽  
P. I. Lepedatu ◽  
...  

Objective: to evaluate the possibilities of ultrasound elastography for differentiation of reactive and lymphomatous superficial lymph nodes (LN).Materials and methods. The prospective study included 138 patients with enlarged superficial LN. Based on a previous histological examination, patients were divided into two groups: 1st group (n = 108) – patients with non-Hodgkin’s lymphomas and Hodgkin’s lymphoma; 2nd (n = 30) – patients with reactive (inflammatory) changes in superficial LN. All patients underwent ultrasound elastography of the enlarged LN using ARFI technology.Results. According to the results of ultrasound elastography, the average, minimum, and maximum shear wave velocities for enlarged LN in lymphoma (1st group) were 2.616 ± 0.684; 1.980 ± 0.557 and 3.351 ± 0.987 m / s, respectively; for LN with reactive changes (2nd group) – 1.704 ± 0.223; 1.414 ± 0.209 and 2.027 ± 0.261 m / s, respectively. Thus, the average, minimum, and maximum values of shear wave velocities significantly different between the groups (p ˂0.001). The cut off values of the average shear wave velocity in the differential diagnosis of lymphoma and hyperplasia are determined at the level of 2.05 m / s, with a sensitivity of 88.5 %, specificity of 100 %, and AUC of 0.942 (p ˂0.001).Conclusion. Ultrasound elastography demonstrated statistically significant differences in shear wave velocity in the enlarged superficial LN in lymphoma and in inflammatory processes that can be used as a preliminary non-invasive differential diagnosis of enlarged superficial LN in these conditions. 


2017 ◽  
Vol 59 (6) ◽  
pp. 657-663 ◽  
Author(s):  
Jin Hee Moon ◽  
Ji-Young Hwang ◽  
Jeong Seon Park ◽  
Sung Hye Koh ◽  
Sun-Young Park

Background Shear wave elastography (SWE) using a region of interest (ROI) can demonstrate the quantitative elasticity of breast lesions. Purpose To prospectively evaluate the impact of two different ROI sizes on the diagnostic performance of SWE for differentiating benign and malignant breast lesions. Material and Methods A total of 154 breast lesions were included. Two types of ROIs were investigated: one involving an approximately 2-mm diameter, small round ROIs placed over the stiffest area of the lesion, as determined by SWE (ROI-S); and another ROI drawn along the margin of the lesion using a touch pen or track ball to encompass the entire lesion (ROI-M). Maximum elasticity (Emax), mean elasticity (Emean), minimum elasticity (Emin), and standard deviation (SD) were measured for the two ROIs. The area under the receiver operating characteristic curve (AUC) as well as the sensitivity and specificity of each elasticity value were determined. Results The AUCs for ROI-S were higher than those for ROI-M when differentiating benign and malignant breast solid lesions. The Emax, Emean, Emin, and SD of the elasticity values for ROI-S were 0.865, 0.857, 0.816, and 0.849, respectively, and for ROI-M were 0.820, 0.780, 0.724, and 0.837, respectively. However, only Emax ( P = 0.0024) and Emean ( P = 0.0015) showed statistically significant differences. For ROI-S, the sensitivity and specificity of Emax were 78.8% and 84.3%, respectively, and those for Emean were 80.8% and 81.4%, respectively. Conclusion Using ROI-S with Emax and Emean has better diagnostic performance than ROI-M for differentiating between benign and malignant breast lesions.


2013 ◽  
Vol 32 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Jianqiao Zhou ◽  
Weiwei Zhan ◽  
Cai Chang ◽  
Jinwen Zhang ◽  
Zhifang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document