scholarly journals Integrated Urban Energy Planning: A Case-Study Using Optimization

2021 ◽  
Author(s):  
Jingbo Guo ◽  
Côme Bissuel ◽  
Francois Courtot

This article describes an integrated energy planning optimization case-study. Starting from an integrated urban energy planning practice based on the urban planning information, an optimization approach is implemented to support decisions on suitable energy structures. Based on a use-case, energy demand, renewable energy resources, energy policy and energy prices are analyzed and set as inputs of the optimization. The results are energy structures minimizing the cost for two separated zones. Meanwhile, under different scenarios, in terms of renewable ratio targets and thermal storage, comparison is made for illustrating economy differences. The optimization mentioned in the article is modelled as a Mixed-Integer Linear Programming problem, which can search the optimal solution with high efficiency among the possible system designs.

2018 ◽  
Author(s):  
Sara Torabi Moghadam ◽  
Silvia Coccolo ◽  
Guglielmina Mutani ◽  
Patrizia Lombardi ◽  
Jean Louis Scartezzini ◽  
...  

The spatial visualization is a very useful tool to help decision-makers in the urban planning process to create future energy transition strategies, implementing energy efficiency and renewable energy technologies in the context of sustainable cities. Statistical methods are often used to understand the driving parameters of energy consumption but rarely used to evaluate future urban renovation scenarios. Simulating whole cities using energy demand softwares can be very extensive in terms of computer resources and data collection. A new methodology, using city archetypes is proposed, here, to simulate the energy consumption of urban areas including urban energy planning scenarios. The objective of this paper is to present an innovative solution for the computation and visualization of energy saving at the city scale.The energy demand of cities, as well as the micro-climatic conditions, are calculated by using a simplified 3D model designed as function of the city urban geometrical and physical characteristics. Data are extracted from a GIS database that was used in a previous study. In this paper, we showed how the number of buildings to be simulated can be drastically reduced without affecting the accuracy of the results. This model is then used to evaluate the influence of two set of renovation solutions. The energy consumption are then integrated back in the GIS to identify the areas in the city where refurbishment works are needed more rapidly. The city of Settimo Torinese (Italy) is used as a demonstrator for the proposed methodology, which can be applied to all cities worldwide with limited amount of information.


Author(s):  
Gema Hernandez-Moral ◽  
◽  
Víctor Iván Serna-Gonzalez ◽  
Francisco Javier Miguel Herrero ◽  
César Valmaseda-Tranque

Climate change will have a strong impact on urban settings, which will also represent one of the major challenges (world’s urban population is expected to double by 2050, EU buildings consume 40% final energy and generate 36% CO2 emissions). A plethora of initiatives address this challenge by stressing the underlying necessity of thinking globally but acting locally. This entails the inclusion of a varied set of decision-makers acting at different scales and needing robust, comprehensive and comparable information that can support them in their energy planning process. To this end, this paper presents the GIS4ENER tool to support energy planners at different scales by proposing a bottom-up approach towards the calculation of energy demand and consumption at local scale that can be aggregated to support other decision-making scales. It is based on three main pillars: the exploitation of publicly available data (such as Open Street Maps, Building Stock Observatory or TABULA), the implementation of standardised methods to calculate energy (in particular the ISO52000 family) and the use of Geographic Information Systems to represent and facilitate the understanding of results, and their aggregation. The paper presents the context, main differences with other approaches and results of the tool in Osimo (IT).


2013 ◽  
Vol 15 (3) ◽  
pp. 273-281

<p>The purpose of this paper is to offer an initial presentation and classification of the methodological approaches used to analyzing energy demand, related CO2 emissions and economic development for countries, regions and subsequently to provide for an extended survey of related articles for the case-study of Greece that identified 48 scientific publications. It was found that all three main existent methodological analytical schemes, namely &lsquo;Top-down&rsquo; models, Econometric methods and Decomposition Analysis methods, have been applied to model energy, environmental and macro-economic variables for Greece. Specific application areas included sectoral (industrial, transport, tourism, manufacturing, residential and electricity) energy demand and related CO2 emissions, energy prices and energy taxation. The paper culminates to a comprehensive comparison of employed methods and obtained results for Greece and conclusions.</p>


2019 ◽  
Vol 27 (2) ◽  
pp. 561-578 ◽  
Author(s):  
Won-Gil Hyung ◽  
Sangyong Kim ◽  
Jung-Kyu Jo

Purpose Applied a hybrid approach using genetic algorithms (GAs) for a case-based retrieval process in order to increase the overall improved cost accuracy for a case-based library. The paper aims to discuss this issue. Design/methodology/approach A weight optimization approach using case-based reasoning (CBR) with proposed GAs for developing the CBR model. GAs are used to investigate optimized weight generation with an application to real project cases. Findings The proposed CBR model can reduce errors consistently, and be potentially useful in the early financial planning stage. The authors suggest the developed CBR model can provide decision-makers with accurate cost information for assessing and comparing multiple alternatives in order to obtain the optimal solution while controlling cost. Originality/value The system can operate with more accuracy or less cost, and CBR can be used to better understand the effects of factor interaction and variation during the developed system’s process.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3202
Author(s):  
Longxi Li

The energy interaction among a load service entity and community energy systems in neighboring communities leads to a complex energy generation, storage, and transaction problem. A load service entity is formed by a local electricity generation system, storage system, and renewable energy resources, which can provide ancillary services to customers and the utility grid. This paper proposes two coordination schemes for the interaction of community-based energy systems and load service entities based on game-theoretic frameworks. The first one is a centralized coordination scheme with full cooperation, in which the load service entity and community energy systems jointly activate the local resources. The second one is set as a decentralized coordination scheme to obtain a relative balance of interests among the market participants in a Stackelberg framework. Two mathematical models are developed for the day-ahead decision-making of the above energy management schemes. The Shapley value method, Karush-Kuhn-Tucker conditions, and strong dual theory are applied to solve the complex coordination problems. Numerical study shows the effectiveness of the coordination strategies that all stakeholders benefit from the proposed coordination schemes and create a win–win situation. In addition, sensitivity analysis is conducted to study the effects of system configuration, energy demand, and energy prices on the economic performance of all stakeholders. The results can serve as references for business managers of the load service entity.


2016 ◽  
Vol 369 ◽  
pp. 135-141
Author(s):  
L.J.C. Vasconcelos ◽  
V.S. da Silva

In recent decades, global events and extreme changes make sustainable development and renewable energy a frequent subject of discussion in numerous global meetings. To analyze the energy matrix of a region in order to optimize it sustainably, is a way to reduce the impacts of these changes. Currently, the world energy matrix is made up of 81.0 % of non-renewable sources (78.4% oil and oil products, natural gas and coal, and 2.6 % uranium) and 19.0 % from renewable sources, (traditional biomass 9.0 %, bio-heat 2.6 %, 3.8% hydropower and 3.6% others renewable energies such as solar, wind, geothermal, biodiesel, ethanol, ocean power, etc.). In this sense, the aim of this work is to establish a sustainable model of energy planning in a region taking into account local characteristics and the efficiency in the power generation for residential systems. Energy demand data was collected from different Brazilian companies. From the data obtained, it was found that the method/model used is very efficient for the case study related to the energy efficiency of housing systems using renewable energy.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Lin Fu ◽  
Zhonghai Zheng ◽  
Hongfa Di ◽  
Yi Jiang

It is important to deal with energy saving in buildings of one city level, and plan the energy system from one building to one city level. We strongly suggest conducting urban building energy planning (UBEP) in the urban planning field in China. There are two main characteristics of an urban building energy system. First, the terminal building energy demand is dynamically timely. Second, the energy demand, energy sources supply, energy equipments, and networks of heating, cooling, gas, and electricity, are distributed in an urban space. It is meaningful to conduct an innovative urban energy planning with space distribution and time dynamic simulation. Therefore, an UBEP simulation tool, developed by our research group, is introduced. Finally, a case of energy planning in Beijing City in 2010 for heating and air conditioning system is dynamically simulated and analyzed. To meet the same building energy demand in Beijing, such as heating, air conditioning, gas, and electricity, different energy equipments, such as boiler, combined heating and power, combined cooling, heating, and power system, and heat pump based on different energy sources, such as coal, gas, and electricity, should be planned alternatively. Also, an optimum urban energy system with high energy efficiency and low environmental emission can be achieved. This simulation tool contains most models of heating and cooling energy systems in China. We can validate the models with statistical data from previous or present simulation, and the simulation results in future planning can serve as guidance for the construction of municipal energy infrastructure. We can conclude that simulation in time dimension shows the characteristics of dynamic load in each nodes of the energy flow. The objective is to present the comparison of different scenarios and optimize the planning schemes.


Author(s):  
Wei Zhu ◽  
Di Yang ◽  
Jun Huang

The wheel–rail contact relationship has a great impact on the security and reliability of metro vehicles in service. In particular, wear modeling and maintenance optimization of the wheels play significant roles with regard to both safety and cost. However, it is difficult to provide a satisfactory model of wheel wear because of the open nature of real wheel–rail systems and the constantly varying environmental conditions in which they operate. Historically, re-profiling, which also has its limitation to some extent, was adopted as a common strategy to restore the original profiles of the worn wheels. Acknowledging that re-profiling is not the only strategy for dealing with wheel wear, the authors of this study have developed a more advanced optimization approach that includes two more strategies, namely, vehicle turning and multi-template use, to give as near an optimal solution as possible. Vehicle turning refers to the reversal of the vehicle’s orientation on the rail, whereas multi-template use refers to the situation where different re-profiling templates are used alternately. In this paper, re-profiling, vehicle turning, and multi-template use have been discussed separately. Then a hybrid optimization strategy for the maintenance of the wheels of metro vehicles has been proposed, with the aim of maximizing the wheel life while minimizing the relevant costs. An initial case study on the Shanghai Metro system shows that the proposed approach is able to provide a more reasonable solution for the optimization of the maintenance strategies.


Author(s):  
Lin Fu ◽  
Zhonghai Zheng ◽  
Hongfa Di ◽  
Yi Jiang

It’s important to deal with building energy-saving in one city level and plan the energy system from one building to one city level. It’s suggested strongly to conduct urban building energy planning in urban planning system in China. There are two main characteristics of urban building energy system. That is, firstly, the terminal building energy demand is dynamic timely, such as the heating, cooling, gas and electricity load of 8760 hours a year with peak and valley load. Secondly, the energy demand, energy sources supply, energy equipments and networks of heating, cooling, gas and electricity are distributed in urban space. It’s meaningful to conduct an innovative urban energy planning with space distribution and time dynamic simulation. In this paper, the energy planning method with space and time characteristics is presented and analyzed briefly. In the meanwhile, to meet the same energy demand in buildings, such as heating, air conditioning, gas and electricity, different energy equipments such as boiler, CHP, CCHP and heat pump based on different energy sources such as coal, gas and electricity can be planned and should be alternative among those energy sources and equipments. Thus, a well alternative urban energy system with high energy efficiency and low environmental emission should be simulated. Therefore, an urban building energy planning (UBEP) simulation tool developed by our research group is introduced. And finally, a case of energy planning in Beijing City in 2010 for heating and air conditioning system is simulated dynamically and analyzed.


Smart Cities ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1242-1265
Author(s):  
Lidia Stermieri ◽  
Chiara Delmastro ◽  
Cristina Becchio ◽  
Stefano Paolo Corgnati

The building sector is currently responsible of 40% of global final energy consumption, influencing the broader energy system in terms of new electricity and heat capacity additions, as well as distribution infrastructure reinforcement. Current building energy efficiency potential is largely untapped, especially at the local level where retrofit interventions are typically enforced, neglecting their potential synergies with the entire energy system. To improve the understanding of these potential interactions, this paper proposes a methodology that links dynamic building simulation and energy planning tools at the urban scale. At first, a detailed bottom-up analysis was conducted to estimate the current and post-retrofit energy demand of the building stock. The stock analysis is further linked to a broader energy system simulation model to understand the impact of building renovation on the whole urban energy system in terms of cost, greenhouse gas emission, and primary energy consumption up to 2050. The methodology is suited to analyze the relationship between building energy demand reduction potential and clean energy sources’ deployment to shift buildings away from fossil fuels, the key priority for decarbonizing buildings. The methodology was applied to the case study city of Torino, Italy, highlighting the critical role of coupling proper building retrofit intervention with district-level heat generation strategies, such as modern district heating able to exploit low-grade heat. Being able to simulate both demand and supply future alternatives, the methodology provides a robust reference for municipalities and energy suppliers aiming at promoting efficient energy policies and targeted investments.


Sign in / Sign up

Export Citation Format

Share Document