Energy Model Applied to Renewable Energy in Housing Systems

2016 ◽  
Vol 369 ◽  
pp. 135-141
Author(s):  
L.J.C. Vasconcelos ◽  
V.S. da Silva

In recent decades, global events and extreme changes make sustainable development and renewable energy a frequent subject of discussion in numerous global meetings. To analyze the energy matrix of a region in order to optimize it sustainably, is a way to reduce the impacts of these changes. Currently, the world energy matrix is made up of 81.0 % of non-renewable sources (78.4% oil and oil products, natural gas and coal, and 2.6 % uranium) and 19.0 % from renewable sources, (traditional biomass 9.0 %, bio-heat 2.6 %, 3.8% hydropower and 3.6% others renewable energies such as solar, wind, geothermal, biodiesel, ethanol, ocean power, etc.). In this sense, the aim of this work is to establish a sustainable model of energy planning in a region taking into account local characteristics and the efficiency in the power generation for residential systems. Energy demand data was collected from different Brazilian companies. From the data obtained, it was found that the method/model used is very efficient for the case study related to the energy efficiency of housing systems using renewable energy.

2012 ◽  
Vol 193-194 ◽  
pp. 111-114 ◽  
Author(s):  
Yue Ren ◽  
Zhi Qi

We discuss the form of application of renewable sources of energy including solar energy and geothermal energy in the environment of construction, and an integrated project on renewable sources of energy is taken as a case study. We also analyze the feasible plans that utilize multiple renewable sources of energy in the construction. The significance of the energy conservation and reduction is presented as well.


Author(s):  
Raúl Cascajo ◽  
Emilio García ◽  
Eduardo Quiles ◽  
Francisco Morant ◽  
Antonio Correcher

Seaports’ energy strategy should rely on the use of renewable energy. Presently, the share of renewable energy used by many of the ports worldwide is negligible. Some initiatives are in the process of implementation to produce some of the energy used by the Port of Valencia, one the largest ports in the Mediterranean Basin. Among these initiatives, a photovoltaic plant with an installed capacity of 5.5 MW is under a tendering process and the assessment studies for the deployment of three to five windmills are close to being finished. However, this is not enough to make it a “zero emissions port” as some of the energy demand would still be covered by fossil fuels. Therefore, we should consider clean alternative energy sources. This article analyses the wave energy resources in the surroundings of the Port of Valencia using a 7-year series of data obtained from numerical modelling (forecast). The spatial distribution of wave power is analysed using data from 3 SIMAR points at Valencia Bay and is compared to the data obtained by the Valencia Buoy I (removed in 2005). The obtained results are used to estimate the power matrices and the average energy output of two wave energy converters suitable to be integrated into the port’s infrastructure. Finally, the wave energy converters’ production is compared to the average amount of energy that is forecast to be obtained from other renewable sources such as solar and wind. Due to the nature of the Gulf’s wave climate (mostly low waves), the main conclusion is that the energy obtainable from the waves in the Valencia Gulf will be in correlation with such climate. However, when dealing with great energy consumers every source of production is worthwhile and further research is needed to optimize the production of energy from renewable sources and its use in an industrial environment such as ports.


Author(s):  
Paulina Trębska ◽  
Arkadiusz Gromada

The purpose of this article is to present the changes in the structure of production and consumption of energy from renewable energy sources in Poland and in the European Union. Renewable energy sources account for only about 16% of world energy production. This situation, however, from year to year changes. Prym in the use of energy from renewable sources leads the European Union, which has set itself an ambitious target that by 2020, 20% of the energy extracted from the green renewable energy sources.


2021 ◽  
Vol 19 ◽  
pp. 189-194
Author(s):  
L. F. C. Castro ◽  
◽  
B.B. Freitas ◽  
P. C. M. Carvalho

The increasing energy demand is a global concern, directly associated with indicators of greenhouse gases and air pollution. These, in turn, are directly related to the physical, social and economic aspects of cities. One way to minimize such impacts is to diversify the energy matrix with renewable sources. On the other hand, the use of wind and solar plants are susceptible to multiple conflicts, due to urban aesthetics, technology scale or directionality of the energy flow across individual property limits. Considering that the urban form directly impacts the energy demand and the existence of conflicts arising from the use of renewable sources, the integration between urban and energy planning plays an important role in mitigating the risks associated with the growth of renewable generation. With such motivation, we propose a comparative analysis of the main tools of urban and / or energy planning through a systematic review of the literature. The methodology of the literature review and the results are presented through a table with the evaluated functionalities: Scenarios, simulations, energy conditioning, integration with GIS systems and ability to integrate with cities master plans.


2018 ◽  
Vol 58 (2) ◽  
pp. 647
Author(s):  
Martin Wilkes

Since the turn of the century, gas has been highlighted as the transition fuel to a lower emissions world, and, in 2011, the International Energy Agency published a special report entitled ‘Are we entering the golden age of gas’, which indicated that gas use could rise by over 50% to provide more than 25% of world energy demand by 2035. Even though gas use has risen in tandem with the increase in renewable energy, over the past decade, coal has been the fastest growing fuel because developing countries choose cheap power to provide their growing energy needs. Gas has been, and continues to be, subject to a green, cheap squeeze; squeezed by cleaner renewables on the one hand, and cheaper coal on the other. This paper will look at the impact that increasing amounts of renewable energy has on existing power generation and supply systems, and provide insights into the potential range of outcomes in emission levels, and the need to not only discuss renewable energy target, but to also understand the total energy mix, and the need to reposition gas from a transition fuel to the natural long-term companion of renewables.


2019 ◽  
Vol 5 (7) ◽  
pp. 5
Author(s):  
Satyam Kumar Prasun ◽  
Sanjeev Jararia

The demand for electricity power is increasing day by day, which cannot be met  with  the satisfied  level without  non-renewable energy  resource. Renewable  energy sources  such as wind,  solar are universal and  ecological. These renewable energy  sources are best options to fulfill the world energy demand, but unpredictable due to natural conditions. The use of the hybrid solar and wind renewable energy system like will be the best option forthe utilization  these  available  resources.  The  objective  of  this  paper  is  to  study  the various aspects of hybrid solar and wind system. The application and different theories related to the development of hybrid also discussed in this paper.


2021 ◽  
Author(s):  
Jingbo Guo ◽  
Côme Bissuel ◽  
Francois Courtot

This article describes an integrated energy planning optimization case-study. Starting from an integrated urban energy planning practice based on the urban planning information, an optimization approach is implemented to support decisions on suitable energy structures. Based on a use-case, energy demand, renewable energy resources, energy policy and energy prices are analyzed and set as inputs of the optimization. The results are energy structures minimizing the cost for two separated zones. Meanwhile, under different scenarios, in terms of renewable ratio targets and thermal storage, comparison is made for illustrating economy differences. The optimization mentioned in the article is modelled as a Mixed-Integer Linear Programming problem, which can search the optimal solution with high efficiency among the possible system designs.


Sign in / Sign up

Export Citation Format

Share Document