Urban Building Energy Planning With Space Distribution and Time Dynamic Simulation

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Lin Fu ◽  
Zhonghai Zheng ◽  
Hongfa Di ◽  
Yi Jiang

It is important to deal with energy saving in buildings of one city level, and plan the energy system from one building to one city level. We strongly suggest conducting urban building energy planning (UBEP) in the urban planning field in China. There are two main characteristics of an urban building energy system. First, the terminal building energy demand is dynamically timely. Second, the energy demand, energy sources supply, energy equipments, and networks of heating, cooling, gas, and electricity, are distributed in an urban space. It is meaningful to conduct an innovative urban energy planning with space distribution and time dynamic simulation. Therefore, an UBEP simulation tool, developed by our research group, is introduced. Finally, a case of energy planning in Beijing City in 2010 for heating and air conditioning system is dynamically simulated and analyzed. To meet the same building energy demand in Beijing, such as heating, air conditioning, gas, and electricity, different energy equipments, such as boiler, combined heating and power, combined cooling, heating, and power system, and heat pump based on different energy sources, such as coal, gas, and electricity, should be planned alternatively. Also, an optimum urban energy system with high energy efficiency and low environmental emission can be achieved. This simulation tool contains most models of heating and cooling energy systems in China. We can validate the models with statistical data from previous or present simulation, and the simulation results in future planning can serve as guidance for the construction of municipal energy infrastructure. We can conclude that simulation in time dimension shows the characteristics of dynamic load in each nodes of the energy flow. The objective is to present the comparison of different scenarios and optimize the planning schemes.

Author(s):  
Lin Fu ◽  
Zhonghai Zheng ◽  
Hongfa Di ◽  
Yi Jiang

It’s important to deal with building energy-saving in one city level and plan the energy system from one building to one city level. It’s suggested strongly to conduct urban building energy planning in urban planning system in China. There are two main characteristics of urban building energy system. That is, firstly, the terminal building energy demand is dynamic timely, such as the heating, cooling, gas and electricity load of 8760 hours a year with peak and valley load. Secondly, the energy demand, energy sources supply, energy equipments and networks of heating, cooling, gas and electricity are distributed in urban space. It’s meaningful to conduct an innovative urban energy planning with space distribution and time dynamic simulation. In this paper, the energy planning method with space and time characteristics is presented and analyzed briefly. In the meanwhile, to meet the same energy demand in buildings, such as heating, air conditioning, gas and electricity, different energy equipments such as boiler, CHP, CCHP and heat pump based on different energy sources such as coal, gas and electricity can be planned and should be alternative among those energy sources and equipments. Thus, a well alternative urban energy system with high energy efficiency and low environmental emission should be simulated. Therefore, an urban building energy planning (UBEP) simulation tool developed by our research group is introduced. And finally, a case of energy planning in Beijing City in 2010 for heating and air conditioning system is simulated dynamically and analyzed.


Smart Cities ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1242-1265
Author(s):  
Lidia Stermieri ◽  
Chiara Delmastro ◽  
Cristina Becchio ◽  
Stefano Paolo Corgnati

The building sector is currently responsible of 40% of global final energy consumption, influencing the broader energy system in terms of new electricity and heat capacity additions, as well as distribution infrastructure reinforcement. Current building energy efficiency potential is largely untapped, especially at the local level where retrofit interventions are typically enforced, neglecting their potential synergies with the entire energy system. To improve the understanding of these potential interactions, this paper proposes a methodology that links dynamic building simulation and energy planning tools at the urban scale. At first, a detailed bottom-up analysis was conducted to estimate the current and post-retrofit energy demand of the building stock. The stock analysis is further linked to a broader energy system simulation model to understand the impact of building renovation on the whole urban energy system in terms of cost, greenhouse gas emission, and primary energy consumption up to 2050. The methodology is suited to analyze the relationship between building energy demand reduction potential and clean energy sources’ deployment to shift buildings away from fossil fuels, the key priority for decarbonizing buildings. The methodology was applied to the case study city of Torino, Italy, highlighting the critical role of coupling proper building retrofit intervention with district-level heat generation strategies, such as modern district heating able to exploit low-grade heat. Being able to simulate both demand and supply future alternatives, the methodology provides a robust reference for municipalities and energy suppliers aiming at promoting efficient energy policies and targeted investments.


2021 ◽  
Author(s):  
Taghi Karimipanah

It is well-known fact that air conditioning systems are responsible for a significant part of all energy systems in building energy usage. In EU buildings, the building HVAC systems account for ca 50% of the energy consumed. In the U.S., air-conditioning accounts on average about 12% of residential energy expenditures. The proper choice of air distribution systems and sustainable energy sources to drive the electrical components have a vital impact to achieve the best requirements for indoor climate including, hygienical, thermal, and reasonable energy-saving goals. The building energy system components that have a considerable impact on the demand for final energy in the building are design, outdoor environment conditions, HVAC systems, water consumption, electrical appliances, indoor thermal comfort, and indoor human activities. For calculation of the energy balance in a building, we need to consider the total energy flows in and out from the building including ventilation heat losses, the perimeters transmission heat loses, solar radiation, internal heat from occupants and appliances, space and domestic water heating, air leakage, and sewage heat losses. However, it is a difficult task to handle the above time-dependent parameters therefore an energy simulation program will always be used. This chapter aims to assess the role of ventilation and air-conditioning of buildings through the sustainability approaches and some of the existing renewable energy-based methods of HVAC systems are presented. This comprehensive review has been shown that using the new air distribution systems in combination with renewable energy sources are key factors to improve the HVAC performance and move toward Nearly Zero Carbon Buildings (NZCB).


2021 ◽  
Vol 24 ◽  
Author(s):  
Flávia Mendes de Almeida Collaço ◽  
Célio Bermann

Abstract This study analyzes the local energy planning (LEP), a set of urban energy strategies and potential scope, for São Paulo from 2014 to 2030. A simulation model is used to quantify the impacts of implementing LEP strategies on the city’s energy system based on three indicators: energy demand, percentage usage of renewable sources, and greenhouse gas (GHG) emissions. The performance of LEP strategies was analyzed for two scenarios: the first reproduces the city policies in force, and the second expands the population’s access to city energy services. Considering the implementation of LEP in the first scenario, the city exhibits a 65% usage of renewable energy and a 43% reduction in GHG emissions in 2030. Furthermore, implementation of the same strategies in the second scenario, also for 2030, results in a 67% usage of renewable energy with a 24% reduction in emissions compared to 2014.


2018 ◽  
Author(s):  
Sara Torabi Moghadam ◽  
Silvia Coccolo ◽  
Guglielmina Mutani ◽  
Patrizia Lombardi ◽  
Jean Louis Scartezzini ◽  
...  

The spatial visualization is a very useful tool to help decision-makers in the urban planning process to create future energy transition strategies, implementing energy efficiency and renewable energy technologies in the context of sustainable cities. Statistical methods are often used to understand the driving parameters of energy consumption but rarely used to evaluate future urban renovation scenarios. Simulating whole cities using energy demand softwares can be very extensive in terms of computer resources and data collection. A new methodology, using city archetypes is proposed, here, to simulate the energy consumption of urban areas including urban energy planning scenarios. The objective of this paper is to present an innovative solution for the computation and visualization of energy saving at the city scale.The energy demand of cities, as well as the micro-climatic conditions, are calculated by using a simplified 3D model designed as function of the city urban geometrical and physical characteristics. Data are extracted from a GIS database that was used in a previous study. In this paper, we showed how the number of buildings to be simulated can be drastically reduced without affecting the accuracy of the results. This model is then used to evaluate the influence of two set of renovation solutions. The energy consumption are then integrated back in the GIS to identify the areas in the city where refurbishment works are needed more rapidly. The city of Settimo Torinese (Italy) is used as a demonstrator for the proposed methodology, which can be applied to all cities worldwide with limited amount of information.


Author(s):  
Gema Hernandez-Moral ◽  
◽  
Víctor Iván Serna-Gonzalez ◽  
Francisco Javier Miguel Herrero ◽  
César Valmaseda-Tranque

Climate change will have a strong impact on urban settings, which will also represent one of the major challenges (world’s urban population is expected to double by 2050, EU buildings consume 40% final energy and generate 36% CO2 emissions). A plethora of initiatives address this challenge by stressing the underlying necessity of thinking globally but acting locally. This entails the inclusion of a varied set of decision-makers acting at different scales and needing robust, comprehensive and comparable information that can support them in their energy planning process. To this end, this paper presents the GIS4ENER tool to support energy planners at different scales by proposing a bottom-up approach towards the calculation of energy demand and consumption at local scale that can be aggregated to support other decision-making scales. It is based on three main pillars: the exploitation of publicly available data (such as Open Street Maps, Building Stock Observatory or TABULA), the implementation of standardised methods to calculate energy (in particular the ISO52000 family) and the use of Geographic Information Systems to represent and facilitate the understanding of results, and their aggregation. The paper presents the context, main differences with other approaches and results of the tool in Osimo (IT).


2018 ◽  
Vol 3 (4) ◽  
pp. 56 ◽  
Author(s):  
Yvon Delerablée ◽  
Dina Rammal ◽  
Hussein Mroueh ◽  
Sébastien Burlon ◽  
Julien Habert ◽  
...  

During the next 15 years, around 200 km of tunnels and 68 new metro stations will be built around Paris to increase the capacity of the existing metro and the transport efficiency. The Société du Grand Paris—the public entity in charge of the design and the execution of this new network—is also highly concerned by the development and the use of renewable energy within this project, especially the integration of thermoactive metro stations in a smart energy system. This paper discusses some issues related to this strategy within the “Grand Paris Project”. The first part presents how smart technology could help to the integration of thermoactive metro stations into the urban energy system, while the second part addresses the following issues: assessment of the geothermal potential, estimate of the energy demand, ground investigations, thermal design, and finally system monitoring. The mechanical design is not considered in this paper. The paper shows the pertinence of the smart energy system for the integration of the thermoactive metro stations energy and the procedure for its implementation.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2193 ◽  
Author(s):  
Dominik Dominković ◽  
Greg Stark ◽  
Bri-Mathias Hodge ◽  
Allan Pedersen

Although it can be complex to integrate variable renewable energy sources such as wind power and photovoltaics into an energy system, the potential benefits are large, as it can help reduce fuel imports, balance the trade, and mitigate the negative impacts in terms of climate change. In order to try to integrate a very large share of variable renewable energy sources into the energy system, an integrated energy planning approach was used, including ice storage in the cooling sector, a smart charging option in the transport sector, and an excess capacity of reverse osmosis technology that was utilised in order to provide flexibility to the energy system. A unit commitment and economic dispatch tool (PLEXOS) was used, and the model was run with both 5 min and 1 h time resolutions. The case study was carried out for a typical Caribbean island nation, based on data derived from measured data from Aruba. The results showed that 78.1% of the final electricity demand in 2020 was met by variable renewable energy sources, having 1.0% of curtailed energy in the energy system. The total economic cost of the modelled energy system was similar to the current energy system, dominated by the fossil fuel imports. The results are relevant for many populated islands and island nations.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Juan Alejandro Martínez Linares ◽  
Antonio Vázquez Pérez ◽  
Miguel Castro Fernández ◽  
Miriam Vilaragut Llanes ◽  
Maria Rodríguez Gámez

Computer science's technologies have come to revolutionize the current era, the distributed generation and the introduction of new alternatives in the conception of the energy production, it is a factor that seen from the energy planning it allows to introduce the renewable energy sources as an element in the development of energetically sustainable territories.  The space distribution of the natural resources that they generate, it has made necessary to develop advanced systems for the studies at the space level. For the necessities of printing an analysis space and territorial of the renewable energy sources studies, a geographical information system of renewable energy sources was designed using free software that offers information of the renewable potentials in the territory. This system is a tool that allows an appropriate way to offers information of the place (longitude and latitude) and the potentials (solar, hydric, wind, and biomass) that are generated in them.


2020 ◽  
Vol 197 ◽  
pp. 01003
Author(s):  
Lorenzo Mario Pastore ◽  
Gianluigi Lo Basso ◽  
Matteo Sforzini ◽  
Livio de Santoli

The growing penetration of non-programmable energy sources will largely contribute to intensify the renewable capacity firming issues. Providing a higher systems flexibility, i.e. the ability to match the supply and the demand sides as much as possible, is the main challenge to cope with, by adopting new energy planning paradigms. In this framework, different combined strategies, aiming at efficiently integrating that large amount of variable RES (VRES), have to be implemented. In the recent years, the Smart Energy Systems (SES) concept has been introduced to overcome the single-sector approach, promoting a holistic and integrated vision. By that approach, it is possible to exploit synergies between different energy sectors so as to identify the best technical options to globally reduce the primary fossil energy consumption. Starting from a quantitative and qualitative analysis of the most recent international studies dealing with the SES approach, the aim of this paper is to critically review and analyse the role of the main potential flexibility measures applied in the energy planning sector. In detail, Power-to-X and Demand Side Management (DSM) application have been considered, highlighting strengths and weaknesses of such strategies to accomplish the ambitious target of 100% renewable. From this literature review, it emerges how a single strategy adoption is not enough to guarantee the required flexibility level for the whole energy system. Indeed, the best configuration can be attained by integrating different options matching all the external constraints.


Sign in / Sign up

Export Citation Format

Share Document