Chapter 14. Combining Probabilistic Logic and Deep Learning for Self-Supervised Learning

2021 ◽  
Author(s):  
Hoifung Poon ◽  
Hai Wang ◽  
Hunter Lang

Deep learning has proven effective for various application tasks, but its applicability is limited by the reliance on annotated examples. Self-supervised learning has emerged as a promising direction to alleviate the supervision bottleneck, but existing work focuses on leveraging co-occurrences in unlabeled data for task-agnostic representation learning, as exemplified by masked language model pretraining. In this chapter, we explore task-specific self-supervision, which leverages domain knowledge to automatically annotate noisy training examples for end applications, either by introducing labeling functions for annotating individual instances, or by imposing constraints over interdependent label decisions. We first present deep probabilistic logic (DPL), which offers a unifying framework for task-specific self-supervision by composing probabilistic logic with deep learning. DPL represents unknown labels as latent variables and incorporates diverse self-supervision using probabilistic logic to train a deep neural network end-to-end using variational EM. Next, we present self-supervised self-supervision (S4), which adds to DPL the capability to learn new self-supervision automatically. Starting from an initial seed self-supervision, S4 iteratively uses the deep neural network to propose new self supervision. These are either added directly (a form of structured self-training) or verified by a human expert (as in feature-based active learning). Experiments on real-world applications such as biomedical machine reading and various text classification tasks show that task-specific self-supervision can effectively leverage domain expertise and often match the accuracy of supervised methods with a tiny fraction of human effort.

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 298 ◽  
Author(s):  
Shenshen Gu ◽  
Yue Yang

The Max-cut problem is a well-known combinatorial optimization problem, which has many real-world applications. However, the problem has been proven to be non-deterministic polynomial-hard (NP-hard), which means that exact solution algorithms are not suitable for large-scale situations, as it is too time-consuming to obtain a solution. Therefore, designing heuristic algorithms is a promising but challenging direction to effectively solve large-scale Max-cut problems. For this reason, we propose a unique method which combines a pointer network and two deep learning strategies (supervised learning and reinforcement learning) in this paper, in order to address this challenge. A pointer network is a sequence-to-sequence deep neural network, which can extract data features in a purely data-driven way to discover the hidden laws behind data. Combining the characteristics of the Max-cut problem, we designed the input and output mechanisms of the pointer network model, and we used supervised learning and reinforcement learning to train the model to evaluate the model performance. Through experiments, we illustrated that our model can be well applied to solve large-scale Max-cut problems. Our experimental results also revealed that the new method will further encourage broader exploration of deep neural network for large-scale combinatorial optimization problems.


2020 ◽  
Vol 10 (16) ◽  
pp. 5640
Author(s):  
Jingyu Yao ◽  
Shengwu Qin ◽  
Shuangshuang Qiao ◽  
Wenchao Che ◽  
Yang Chen ◽  
...  

Accurate and timely landslide susceptibility mapping (LSM) is essential to effectively reduce the risk of landslide. In recent years, deep learning has been successfully applied to landslide susceptibility assessment due to the strong ability of fitting. However, in actual applications, the number of labeled samples is usually not sufficient for the training component. In this paper, a deep neural network model based on semi-supervised learning (SSL-DNN) for landslide susceptibility is proposed, which makes full use of a large number of spatial information (unlabeled data) with limited labeled data in the region to train the mode. Taking Jiaohe County in Jilin Province, China as an example, the landslide inventory from 2000 to 2017 was collected and 12 metrological, geographical, and human explanatory factors were compiled. Meanwhile, supervised models such as deep neural network (DNN), support vector machine (SVM), and logistic regression (LR) were implemented for comparison. Then, the landslide susceptibility was plotted and a series of evaluation tools such as class accuracy, predictive rate curves (AUC), and information gain ratio (IGR) were calculated to compare the prediction of models and factors. Experimental results indicate that the proposed SSL-DNN model (AUC = 0.898) outperformed all the comparison models. Therefore, semi-supervised deep learning could be considered as a potential approach for LSM.


Deep learning has arrived with a great number of advances in the research of machine learning and its models. Due to the advancements recently in the field of deep learning and its models especially in the fields like NLP and Computer Vision in supervised learning for which we have to pre-definably decide a dataset and train our model completely on it and make predictions but in case if we have any new samples of data on which we want our model to be predicted then we have to completely retrain the model, which is computationally costly therefore to avoid re-training the model, we add the new samples on the previously learnt features from the pre- trained model called Incremental Learning. In the paper we proposed the system to overcome the process of catastrophic forgetting we introduced the concept of building on pre-trained model.


Author(s):  
Suman Kumari ◽  
Basant Agarwal ◽  
Mamta Mittal

Sentiment analysis is used to detect the opinion/sentiment expressed from the unstructured text. Most of the existing state-of-the-art methods are based on supervised learning, and therefore, a labelled dataset is required to build the model, and it is very difficult task to obtain a labelled dataset for every domain. Cross-domain sentiment analysis is to develop a model which is trained on labelled dataset of one domain, and the performance is evaluated on another domain. The performance of such cross-domain sentiment analysis is still very limited due to presence of many domain-related terms, and the sentiment analysis is a domain-dependent problem in which words changes their polarity depending upon the domain. In addition, cross-domain sentiment analysis model suffers with the problem of large number of out-of-the-vocabulary (unseen words) words. In this paper, the authors propose a deep learning-based approach for cross-domain sentiment analysis. Experimental results show that the proposed approach improves the performance on the benchmark dataset.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


Sign in / Sign up

Export Citation Format

Share Document