Differential evolution algorithm-based multiple-factor optimization methods for data assimilation

2021 ◽  
Vol 25 (6) ◽  
pp. 1473-1486
Author(s):  
Yulong Bai ◽  
Di Wang ◽  
Yizhao Wang ◽  
Mingheng Chang

The methods of searching for optimized parameters have substantial effects on the forecast accuracy of ensemble data assimilation systems. The selection of these factors is usually performed using trial-and-error methods, and poor parameterizations may lead to filter divergence. Combined with the local ensemble transform Kalman filtering method (LETKF), a technique for an automated search of the best configuration (parameters) of a data assimilation system is proposed. To obtain better assimilation, a differential evolution (DE) algorithm-based multiple-factor parameterization method results in the corresponding circumstances. By combining with fast-searching DE algorithms, we may retrieve the most ideal parameter combinations. Several numerical experiments performed with the Lorenz-96 model show that new methods performed better than the original one-parameter optimization methods. As the basis of DE methods, the best combinations of the local radius and the covariance inflation parameter, which can guarantee the best DA performances in the corresponding circumstances, are retrieved. It is found that the new method is capable of outperforming previous search algorithms under both perfect and imperfect model scenarios, and the calculation cost in Lorenz-96 model is lower. However, how to apply the new proposed method to more complex atmospheric or land surface models requires further verification.

2012 ◽  
Vol 229-231 ◽  
pp. 1886-1890
Author(s):  
Jing Yan Lan ◽  
Yue Jun Lu

Differential evolution (DE) algorithm is a heuristic approach that has a great ability to solve complex optimization and converges faster and with more certainty than many other acclaimed global optimization methods. In this paper, DE algorithm is applied to calibrate design seismic response spectra, the basic idea is that design response spectra and calculated response spectra are defined as objective function of characteristic parameters, the first turning point, the second turning point (characteristic period), the platform height and the attenuation index, of design response spectra, and the characteristic parameters are obtained by minimizing the objective function. Three pieces of the calculated response spectra for one real are calibrated as an application example. The obtained results demonstrate the effectiveness and efficiency of the proposed method.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110144
Author(s):  
Qianqian Zhang ◽  
Daqing Wang ◽  
Lifu Gao

To assess the inverse kinematics (IK) of multiple degree-of-freedom (DOF) serial manipulators, this article proposes a method for solving the IK of manipulators using an improved self-adaptive mutation differential evolution (DE) algorithm. First, based on the self-adaptive DE algorithm, a new adaptive mutation operator and adaptive scaling factor are proposed to change the control parameters and differential strategy of the DE algorithm. Then, an error-related weight coefficient of the objective function is proposed to balance the weight of the position error and orientation error in the objective function. Finally, the proposed method is verified by the benchmark function, the 6-DOF and 7-DOF serial manipulator model. Experimental results show that the improvement of the algorithm and improved objective function can significantly improve the accuracy of the IK. For the specified points and random points in the feasible region, the proportion of accuracy meeting the specified requirements is increased by 22.5% and 28.7%, respectively.


2014 ◽  
Vol 22 (01) ◽  
pp. 101-121 ◽  
Author(s):  
CHUII KHIM CHONG ◽  
MOHD SABERI MOHAMAD ◽  
SAFAAI DERIS ◽  
MOHD SHAHIR SHAMSIR ◽  
LIAN EN CHAI ◽  
...  

When analyzing a metabolic pathway in a mathematical model, it is important that the essential parameters are estimated correctly. However, this process often faces few problems like when the number of unknown parameters increase, trapping of data in the local minima, repeated exposure to bad results during the search process and occurrence of noisy data. Thus, this paper intends to present an improved bee memory differential evolution (IBMDE) algorithm to solve the mentioned problems. This is a hybrid algorithm that combines the differential evolution (DE) algorithm, the Kalman filter, artificial bee colony (ABC) algorithm, and a memory feature. The aspartate and threonine biosynthesis pathway, and cell cycle pathway are the metabolic pathways used in this paper. For three production simulation pathways, the IBMDE managed to robustly produce the estimated optimal kinetic parameter values with significantly reduced errors. Besides, it also demonstrated faster convergence time compared to the Nelder–Mead (NM), simulated annealing (SA), the genetic algorithm (GA) and DE, respectively. Most importantly, the kinetic parameters that were generated by the IBMDE have improved the production rates of desired metabolites better than other estimation algorithms. Meanwhile, the results proved that the IBMDE is a reliable estimation algorithm.


2018 ◽  
Vol 73 ◽  
pp. 13016
Author(s):  
Mara Huriga Priymasiwi ◽  
Mustafid

The management of raw material inventory is used to overcome the problems occuring especially in the food industry to achieve effectiveness, timeliness, and high service levels which are contrary to the problem of effectiveness and cost efficiency. The inventory control system is built to achieve the optimization of raw material inventory cost in the supply chain in food industry. This research represents Differential Evolution (DE) algorithm as optimization method by minimizing total inventory based on amount of raw material requirement, purchasing cost, saefty stock and reorder time. With the population size, the parameters of mutation control, crossover parameters and the number of iterations respectively 80, 0.8, 0.5, 200. With the amount of safety stock at the company 7213.95 obtained a total inventory cost decrease of 39.95%. Result indicate that the use of DE algorithm help providein efficient amount, time and cost.


2013 ◽  
Vol 394 ◽  
pp. 314-320
Author(s):  
Ibrahim Al Hamrouni ◽  
Azhar Khairuddin ◽  
M. Salem

Transmission expansion planning has become a complicated procedure more than it was. The rapid growth of the transmission networks and the deregulation has introduced more objectives and uncertainties to the transmission network planners. As a result of that, new approach and criteria that can replace the old ones are needed for TEP problem. The main goal of this process is to locate the additional transmission lines that must be added to meet the forecasted load in the system adequately with minimum cost. There have been several methods applied for this purpose; mathematical optimization methods, heuristic and Meta heuristic methods. This paper reviews the use of Meta heuristic method by the means of differential evolution algorithm (DEA) to solve this multi objective optimization problem. In addition, some suggestions have been made by the author that can make the DEA more efficient and applicable in the real world networks.


Author(s):  
Ismail Yusuf ◽  
Ayong Hiendro ◽  
F. Trias Pontia Wigyarianto ◽  
Kho Hie Khwee

Differential evolution (DE) algorithm has been applied as a powerful tool to find optimum switching angles for selective harmonic elimination pulse width modulation (SHEPWM) inverters. However, the DE’s performace is very dependent on its control parameters. Conventional DE generally uses either trial and error mechanism or tuning technique to determine appropriate values of the control paramaters. The disadvantage of this process is that it is very time comsuming. In this paper, an adaptive control parameter is proposed in order to speed up the DE algorithm in optimizing SHEPWM switching angles precisely. The proposed adaptive control parameter is proven to enhance the convergence process of the DE algorithm without requiring initial guesses. The results for both negative and positive modulation index (<em>M</em>) also indicate that the proposed adaptive DE is superior to the conventional DE in generating SHEPWM switching patterns


2019 ◽  
Vol 10 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Ali Khater Mohamed ◽  
Ehab Z. Elfeky ◽  
Mohamed Saleh

The performance of Differential Evolution is significantly affected by the mutation scheme, which attracts many researchers to develop and enhance the mutation scheme in DE. In this article, the authors introduce an enhanced DE algorithm (EDDE) that utilizes the information given by good individuals and bad individuals in the population. The new mutation scheme maintains effectively the exploration/exploitation balance. Numerical experiments are conducted on 24 test problems presented in CEC'2006, and five constrained engineering problems from the literature for verifying and analyzing the performance of EDDE. The presented algorithm showed competitiveness in some cases and superiority in other cases in terms of robustness, efficiency and quality the of the results.


2010 ◽  
Vol 108-111 ◽  
pp. 328-334 ◽  
Author(s):  
Hong Jie Fu

A novel hybrid elements exchange/electromagnetism meta-heuristic differential evolution algorithm, named EEMDE, is proposed in this paper, avoiding the premature convergence of original DE algorithm. A metric to measure the Simplification of force exerted on a point is defined as the mutation rate F in the EEMDE, which is used to get an adaptive adjustment of F. EEMDE may produce slight disturbance on the original vector for enhancing the exploring capacity and avoid the DE to the "uphill" in the wrong direction forward. Experiments demonstrate that the convergence of EEMDE is faster than DE and simulations based on some CSPs express the effectiveness, efficiency and robustness of it.


2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


Sign in / Sign up

Export Citation Format

Share Document