Viral Delivery of Non-Mutated Human Truncated Tau to Neurons Recapitulates Key Features of Human Tauopathy in Wild-Type Mice

2020 ◽  
Vol 77 (2) ◽  
pp. 551-568 ◽  
Author(s):  
Thomas Vogels ◽  
Gréta Vargová ◽  
Veronika Brezováková ◽  
Wim Hendricus Quint ◽  
Tomáš Hromádka

Background: Neuronal accumulation of hyperphosphorylated and truncated tau aggregates is one of the major defining factors and key drivers of neurodegeneration in Alzheimer’s disease and other tauopathies. Objective: We developed an AAV-induced model of tauopathy mediated by human truncated tau protein without familial frontotemporal dementia-related mutations to study tau propagation and the functional consequences of tau pathology. Methods: We performed targeted transductions of the hippocampus or entorhinal cortex in adult mice followed by histological analysis to study the progression of hippocampal tau pathology and tau spreading. We performed behavioral analysis of mice with AAV-induced hippocampal tau pathology. Results: AAV-induced hippocampal tau pathology was characterized by tau hyperphosphorylation (AT8 positivity), sarkosyl insolubility, and the presence of neurofibrillary tangles. AAV-induced tau pathology was associated with microgliosis and hypertrophic astrocytes in the absence of cognitive deficits. Additionally, the co-expression of mCherry fluorescent protein and human truncated tau enabled us to detect both local spreading of human tau and spreading from the entorhinal cortex to the synaptically connected dentate gyrus. Conclusion: Targeted delivery of AAV with truncated tau protein into subcortical and cortical structures of mammalian brains represents an efficient approach for creating temporally and spatially well-defined tau pathology suitable for in vivo studies of tau propagation and neuronal circuit deficits in Alzheimer’s disease.

2020 ◽  
Author(s):  
Christine W. Fung ◽  
Jia Guo ◽  
Helen Y. Figueroa ◽  
Elisa E. Konofagou ◽  
Karen E. Duff

AbstractIn the early stages of Alzheimer’s disease (AD), tau pathology first develops in the entorhinal cortex (EC), then spreads to the hippocampus and at later stages, to the neocortex. Pathology in the neocortex correlates with impaired cognitive performance. Overall, tau pathology correlates well with neurodegeneration but the spatial and temporal association between tau pathology and overt volume loss is unclear. Using in vivo magnetic resonance imaging (MRI) with tensor-based morphometry (TBM) we mapped the spatio-temporal pattern of structural changes in a mouse model of AD-like progressive tauopathy. A novel, co-registered in vivo MRI atlas identified particular regions in the medial temporal lobe (MTL) that had significant volume reduction. The medial entorhinal cortex (MEC) and pre-/para-subiculum (PPS) had the most significant atrophy at the early stage, but atrophy then spread into the hippocampus, most notably, the CA1, dentate gyrus (DG) and subiculum (Sub). TBM-related atrophy in the DG and Sub preceded overt cell loss that has been reported in ex vivo studies in the same mouse model. By unifying an ex vivo 3D reconstruction of tau pathology with the TBM-MRI results we mapped the progression of atrophy in the MTL with the corresponding spread of tau pathology. Our study shows that there is an association between the spread of tau pathology and TBM-related atrophy from the EC to the hippocampus, but atrophy in the DG and Sub preceded overt cell loss.One Sentence SummarySpread of tau pathology in a mouse model of Alzheimer’s disease assessed by MRI was associated with reduced brain tissue volume but not neuronal loss.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


Author(s):  
P. Novak ◽  
N. Zilka ◽  
M. Zilkova ◽  
B. Kovacech ◽  
R. Skrabana ◽  
...  

Neurofibrillary tau protein pathology is closely associated with the progression and phenotype of cognitive decline in Alzheimer’s disease and other tauopathies, and a high-priority target for disease-modifying therapies. Herein, we provide an overview of the development of AADvac1, an active immunotherapy against tau pathology, and tau epitopes that are potential targets for immunotherapy. The vaccine leads to the production of antibodies that target conformational epitopes in the microtubule-binding region of tau, with the aim to prevent tau aggregation and spreading of pathology, and promote tau clearance. The therapeutic potential of the vaccine was evaluated in transgenic rats and mice expressing truncated, non mutant tau protein, which faithfully replicate of human tau pathology. Treatment with AADvac1 resulted in reduction of neurofibrillary pathology and insoluble tau in their brains, and amelioration of their deleterious phenotype. The vaccine was highly immunogenic in humans, inducing production of IgG antibodies against the tau peptide in 29/30 treated elderly patients with mild-to-moderate Alzheimer’s. These antibodies were able to recognise insoluble tau proteins in Alzheimer patients’ brains. Treatment with AADvac1 proved to be remarkably safe, with injection site reactions being the only adverse event tied to treatment. AADvac1 is currently being investigated in a phase 2 study in Alzheimer’s disease, and a phase 1 study in non-fluent primary progressive aphasia, a neurodegenerative disorder with a high tau pathology component.


2010 ◽  
Vol 6 ◽  
pp. S429-S430
Author(s):  
Nobuyuki Okamura ◽  
Shozo Furumoto ◽  
Katsutoshi Furukawa ◽  
Hiroyuki Arai ◽  
Kazuhiko Yanai ◽  
...  

2019 ◽  
Vol 356 ◽  
pp. 18-40 ◽  
Author(s):  
Priyal Barai ◽  
Nisith Raval ◽  
Sanjeev Acharya ◽  
Ankit Borisa ◽  
Hardik Bhatt ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Garrett S. Gibbons ◽  
Soo-Jung Kim ◽  
Qihui Wu ◽  
Dawn M. Riddle ◽  
Susan N. Leight ◽  
...  

Abstract Background The spread of tau pathology in Alzheimer’s disease (AD) is mediated by cell-to-cell transmission of pathological tau seeds released from neurons that, upon internalization by recipient neurons, template the misfolding of naïve cellular tau, thereby propagating fibrillization. We hypothesize that anti-tau monoclonal antibodies (mAbs) that selectively bind to pathological tau seeds will inhibit propagation of tau aggregates and reduce the spread of tau pathology in vivo. Methods We inoculated mice with human AD brain-derived extracts containing tau paired helical filaments (AD-tau) and identified two novel mAbs, DMR7 and SKT82, that selectively bind to a misfolded pathological conformation of tau relative to recombinant tau monomer. To evaluate the effects of these mAbs on the spread of pathological tau in vivo, 5xFAD mice harboring significant brain Aβ plaque burden were unilaterally injected with AD-tau in the hippocampus, to initiate the formation of neuritic plaque (NP) tau pathology, and were treated weekly with intraperitoneal (i.p.) injections of DMR7, SKT82, or IgG isotype control mAbs. Results DMR7 and SKT82 bind epitopes comprised of the proline-rich domain and c-terminal region of tau and binding is reduced upon disruption of the pathological conformation of AD-tau by chemical and thermal denaturation. We found that both DMR7 and SKT82 immunoprecipitate pathological tau and significantly reduce the seeding of cellular tau aggregates induced by AD-tau in primary neurons by 60.5 + 13.8% and 82.2 + 8.3%, respectively, compared to IgG control. To investigate the mechanism of mAb inhibition, we generated pH-sensitive fluorophore-labeled recombinant tau fibrils seeded by AD-tau to track internalization of tau seeds and demonstrate that the conformation-selective tau mAbs inhibit the internalization of tau seeds. DMR7 and SKT82 treatment reduced hyperphosphorylated NP tau as measured with AT8 immunohistochemistry (IHC) staining, but did not achieve statistical significance in the contralateral cortex and SKT82 significantly reduced tau pathology in the ipsilateral hippocampus by 24.2%; p = 0.044. Conclusions These findings demonstrate that conformation-selective tau mAbs, DMR7 and SKT82, inhibit tau pathology in primary neurons by preventing the uptake of tau seeds and reduce tau pathology in vivo, providing potential novel therapeutic candidates for the treatment of AD.


2006 ◽  
Vol 14 (7S_Part_30) ◽  
pp. P1573-P1573
Author(s):  
Ruben Smith ◽  
Moa Wibom ◽  
Daria Pawlik ◽  
Elisabet Englund ◽  
Oskar Hansson

2013 ◽  
Vol 4 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Alaa H. Abuznait ◽  
Hisham Qosa ◽  
Belnaser A. Busnena ◽  
Khalid A. El Sayed ◽  
Amal Kaddoumi

Sign in / Sign up

Export Citation Format

Share Document