The research of clinical temporal knowledge graph based on depth learning

2021 ◽  
pp. 1-10
Author(s):  
Lijuan Diao ◽  
Shoujun Song ◽  
Gaofang Cao ◽  
Yang Kong

Temporal knowledge base exists on various fields. Take medical medicine field as example, diabetes is a typical chronic disease which evolves slowly. This paper starts from actual EMR data of hospitals by combination of experience and knowledge of clinical doctors. Link prediction on clinical knowledge base such as diabetic complication requires the analysis on temporal characteristic of temporal knowledge base, which is a great challenge for traditional link prediction models. This paper proposes temporal knowledge graph link prediction model based on deep learning. This model selects the TransR transformation model suitable for big data and makes entity projection in relation space containing different semantic meanings, so as to vector the entities and complex semantic relations in graph. Then it adopts LSTM recursive neural network and adds the top-bottom relational information of the graph for sequential learning. Finally it constantly carries out deep learning through incremental calculation and LSTM recursive network to improve the accuracy of prediction. The incremental LSTM model highlights the hidden semantic and clinical temporal information and effectively utilizes sequential learning to mining forward-backward dependent information. It compensates the deficiency of lower prediction accuracy on timely knowledge graph caused by the traditional link prediction models. Finally, it is proved that the new model has better performance over temporal knowledge graph link prediction.

Author(s):  
Kai Wang ◽  
Yu Liu ◽  
Quan Z. Sheng

Link prediction based on knowledge graph embeddings (KGE) has recently drawn a considerable momentum. However, existing KGE models suffer from insufficient accuracy and hardly evaluate the confidence probability of each predicted triple. To fill this critical gap, we propose a novel confidence measurement method based on causal intervention, called Neighborhood Intervention Consistency (NIC). Unlike previous confidence measurement methods that focus on the optimal score in a prediction, NIC actively intervenes in the input entity vector to measure the robustness of the prediction result. The experimental results on ten popular KGE models show that our NIC method can effectively estimate the confidence score of each predicted triple. The top 10% triples with high NIC confidence can achieve 30% higher accuracy in the state-of-the-art KGE models.


2021 ◽  
pp. 1-11
Author(s):  
Yukun Cao ◽  
Zeyu Miao

Knowledge graph link prediction uses known fact links to infer the missing link information in the knowledge graph, which is of great significance to the completion of the knowledge graph. Generating low-dimensional embeddings of entities and relations which are used to make inferences is a popular way for such link prediction problems. This paper proposes a knowledge graph link prediction method called Complex-InversE in the complex space, which maps entities and relations into the complex space. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. The Complex-InversE effectively captures the antisymmetric relations and introduces Dropout and Early-Stopping technologies into deal with the problem of small numbers of relationships and entities, thus effectively alleviates the model’s overfitting. The results of comparison experiment on the public knowledge graph datasets show that the Complex-InversE achieves good results on multiple benchmark evaluation indicators and outperforms previous methods. Complex-InversE’s code is available on GitHub at https://github.com/ZeyuMiao97/Complex-InversE.


2020 ◽  
Vol 34 (03) ◽  
pp. 3000-3008
Author(s):  
George Stoica ◽  
Otilia Stretcu ◽  
Emmanouil Antonios Platanios ◽  
Tom Mitchell ◽  
Barnabás Póczos

We consider the task of knowledge graph link prediction. Given a question consisting of a source entity and a relation (e.g., Shakespeare and BornIn), the objective is to predict the most likely answer entity (e.g., England). Recent approaches tackle this problem by learning entity and relation embeddings. However, they often constrain the relationship between these embeddings to be additive (i.e., the embeddings are concatenated and then processed by a sequence of linear functions and element-wise non-linearities). We show that this type of interaction significantly limits representational power. For example, such models cannot handle cases where a different projection of the source entity is used for each relation. We propose to use contextual parameter generation to address this limitation. More specifically, we treat relations as the context in which source entities are processed to produce predictions, by using relation embeddings to generate the parameters of a model operating over source entity embeddings. This allows models to represent more complex interactions between entities and relations. We apply our method on two existing link prediction methods, including the current state-of-the-art, resulting in significant performance gains and establishing a new state-of-the-art for this task. These gains are achieved while also reducing convergence time by up to 28 times.


2019 ◽  
Vol 33 (3) ◽  
pp. 89-109 ◽  
Author(s):  
Ting (Sophia) Sun

SYNOPSIS This paper aims to promote the application of deep learning to audit procedures by illustrating how the capabilities of deep learning for text understanding, speech recognition, visual recognition, and structured data analysis fit into the audit environment. Based on these four capabilities, deep learning serves two major functions in supporting audit decision making: information identification and judgment support. The paper proposes a framework for applying these two deep learning functions to a variety of audit procedures in different audit phases. An audit data warehouse of historical data can be used to construct prediction models, providing suggested actions for various audit procedures. The data warehouse will be updated and enriched with new data instances through the application of deep learning and a human auditor's corrections. Finally, the paper discusses the challenges faced by the accounting profession, regulators, and educators when it comes to applying deep learning.


2018 ◽  
Vol 27 (01) ◽  
pp. 226-226

Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. OncoKB: a precision oncology knowledge base. JCO Precis Oncol 2017 Jul;2017 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/28890946/ Newton Y, Novak AM, Swatloski T, McColl DC, Chopra S, Graim K, Weinstein AS, Baertsch R, Salama SR, Ellrott K, Chopra M, Goldstein TC, Haussler D, Morozova O, Stuart JM. TumorMap: exploring the molecular similarities of cancer samples in an interactive portal. Cancer Res 2017 Nov 1;77(21):e111-e114 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29092953/ Seyednasrollah F, Koestler DC, Wang T, Piccolo SR, Vega R, Greiner R, Fuchs C, Gofer E, Kumar L, Wolfinger RD, Winner KK, Bare C, Neto EC, Yu T, Shen L, Abdallah K, Norman T, Stolovitzky G, Soule HR, Sweeney CJ, Ryan CJ, Scher HI, Sartor O, Elo LL, Zhou FL, Guinney J, Costello JC, and Prostate Cancer DREAM Challenge Community. A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer. JCO Clin Cancer Inform 2017 Aug 4;(1):1-15 http://ascopubs.org/doi/abs/10.1200/CCI.17.00018


2021 ◽  
Vol 11 (6) ◽  
pp. 2458
Author(s):  
Ronald Roberts ◽  
Laura Inzerillo ◽  
Gaetano Di Mino

Road networks are critical infrastructures within any region and it is imperative to maintain their conditions for safe and effective movement of goods and services. Road Management, therefore, plays a key role to ensure consistent efficient operation. However, significant resources are required to perform necessary maintenance activities to achieve and maintain high levels of service. Pavement maintenance can typically be very expensive and decisions are needed concerning planning and prioritizing interventions. Data are key towards enabling adequate maintenance planning but in many instances, there is limited available information especially in small or under-resourced urban road authorities. This study develops a roadmap to help these authorities by using flexible data analysis and deep learning computational systems to highlight important factors within road networks, which are used to construct models that can help predict future intervention timelines. A case study in Palermo, Italy was successfully developed to demonstrate how the techniques could be applied to perform appropriate feature selection and prediction models based on limited data sources. The workflow provides a pathway towards more effective pavement maintenance management practices using techniques that can be readily adapted based on different environments. This takes another step towards automating these practices within the pavement management system.


Sign in / Sign up

Export Citation Format

Share Document