scholarly journals Exploiting Data Analytics and Deep Learning Systems to Support Pavement Maintenance Decisions

2021 ◽  
Vol 11 (6) ◽  
pp. 2458
Author(s):  
Ronald Roberts ◽  
Laura Inzerillo ◽  
Gaetano Di Mino

Road networks are critical infrastructures within any region and it is imperative to maintain their conditions for safe and effective movement of goods and services. Road Management, therefore, plays a key role to ensure consistent efficient operation. However, significant resources are required to perform necessary maintenance activities to achieve and maintain high levels of service. Pavement maintenance can typically be very expensive and decisions are needed concerning planning and prioritizing interventions. Data are key towards enabling adequate maintenance planning but in many instances, there is limited available information especially in small or under-resourced urban road authorities. This study develops a roadmap to help these authorities by using flexible data analysis and deep learning computational systems to highlight important factors within road networks, which are used to construct models that can help predict future intervention timelines. A case study in Palermo, Italy was successfully developed to demonstrate how the techniques could be applied to perform appropriate feature selection and prediction models based on limited data sources. The workflow provides a pathway towards more effective pavement maintenance management practices using techniques that can be readily adapted based on different environments. This takes another step towards automating these practices within the pavement management system.

2021 ◽  
Author(s):  
Iliya Nemtsov

The increasing need to rebuild and repair Ontario highways has motivated this research aimed at maximizing the efficiency of pavement maintenance and design. The first of two complementary objectives were to evaluate the safety improvements of reduced pavement roughness on two-lane undivided Ontario highways using the Empirical Bayes and Cross-Sectional analysis methods. The second objective was to improve the prediction of pavement distress and surface roughness by examining the impact of local calibration of prediction models. The findings suggest that better pavement conditions can reduce the severity of fatal and injury collisions by as much as 12% in some cases and therefore that pavement maintenance decisions should incorporate road safety when assessing cost-life analysis. The results provide a basis for those decisions in that they can be used to estimate the safety effect of a specific improvement in roughness.


2021 ◽  
Author(s):  
Iliya Nemtsov

The increasing need to rebuild and repair Ontario highways has motivated this research aimed at maximizing the efficiency of pavement maintenance and design. The first of two complementary objectives were to evaluate the safety improvements of reduced pavement roughness on two-lane undivided Ontario highways using the Empirical Bayes and Cross-Sectional analysis methods. The second objective was to improve the prediction of pavement distress and surface roughness by examining the impact of local calibration of prediction models. The findings suggest that better pavement conditions can reduce the severity of fatal and injury collisions by as much as 12% in some cases and therefore that pavement maintenance decisions should incorporate road safety when assessing cost-life analysis. The results provide a basis for those decisions in that they can be used to estimate the safety effect of a specific improvement in roughness.


2020 ◽  
Vol 10 (1) ◽  
pp. 319 ◽  
Author(s):  
Ronald Roberts ◽  
Gaspare Giancontieri ◽  
Laura Inzerillo ◽  
Gaetano Di Mino

Governments are faced with countless challenges to maintain conditions of road networks. This is due to financial and physical resource deficiencies of road authorities. Therefore, low-cost automated systems are sought after to alleviate these issues and deliver adequate road conditions for citizens. There have been several attempts at creating such systems and integrating them within Pavement management systems. This paper utilizes replicable deep learning techniques to carry out hotspot analyses on urban road networks highlighting important pavement distress types and associated severities. Following this, analyses were performed illustrating how the hotspot analysis can be carried out to continuously monitor the structural health of the pavement network. The methodology is applied to a road network in Sicily, Italy where there are numerous roads in need of rehabilitation and repair. Damage detection models were created which accurately highlight the location and a severity assessment. Harmonized distress categories, based on industry standards, are utilized to create practical workflows. This creates a pipeline for future applications of automated pavement distress classification and a platform for an integrated approach towards optimizing urban pavement management systems.


Author(s):  
Marwan Hafez ◽  
Khaled Ksaibati ◽  
Rebecca A. Atadero

Light pavement rehabilitations and low-cost treatments are extensively employed among transportation agencies on roads with relatively low traffic volumes to optimize available resources. One concern with this approach entails the difficulties of determining the optimal timing for treatment application. Making the best use of limited resources requires improvements in maintenance decision-making for selecting treatments considering all affecting factors and previous experience. This paper presents a machine learning approach in the decision-making process for determining the most appropriate pavement maintenance and rehabilitation alternatives for low-volume paved roads at the network level. Based on regional experts’ recommendations and engineering judgments in Colorado, a wide range of 884 cases of pavement-treatment patterns were generated. Then an artificial neural network (ANN) was trained with pattern-recognition algorithms. Two ANN prediction models were developed on the basis of pavement condition data, represented by six condition indices, and road lengths. The objective of training the models is to evaluate the variability of maintenance practices among five engineering regions within the Colorado Department of Transportation (CDOT). The outcome of this study describes the implementation gaps of pavement-preservation activities among CDOT regions resulting from limited maintenance funding. The regional maintenance selection can be processed by the developed ANN decision-making tool to recommend alternatives from regional recommendations as well as similar applications statewide to fit pavement management needs and expected performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hui Wang ◽  
Zhoucong Xu ◽  
Lei Yue

Pavement condition data are collected by agencies to support pavement management system (PMS) for decision-making purpose as well as to construct performance model. The cost of pavement data collection increases with the increase of survey frequencies. However, a lower monitoring frequency could lead to unreliable maintenance decisions. It is necessary to understand the influence of monitoring frequencies on maintenance decision by considering the reliability of performance prediction models. Because of different maintenance conditions of urban roads and highways, their performance show different trends. In this paper, the influence of pavement monitoring frequency on the pavement performance models was investigated. The results indicate that low collection frequencies may result in delay in maintenance action by overestimating pavement performance. The collection frequency for Pavement Condition Index (PCI) can be reduced without compromising the accuracy of performance model, more work should be done to ensure the PCI data quality, thus to guarantee the rationality of maintenance decisions. Effect of frequency reduction on pavement performance (IRI) models of urban roads seems greater than on pavement performance (IRI) models of highways, which may lead to heavier monitoring work for urban roads management. This paper provided an example which demonstrated how a comparative analysis can be performed to determine whether the current data collection plan can provide sufficient data for time series analysis.


2019 ◽  
Vol 33 (3) ◽  
pp. 89-109 ◽  
Author(s):  
Ting (Sophia) Sun

SYNOPSIS This paper aims to promote the application of deep learning to audit procedures by illustrating how the capabilities of deep learning for text understanding, speech recognition, visual recognition, and structured data analysis fit into the audit environment. Based on these four capabilities, deep learning serves two major functions in supporting audit decision making: information identification and judgment support. The paper proposes a framework for applying these two deep learning functions to a variety of audit procedures in different audit phases. An audit data warehouse of historical data can be used to construct prediction models, providing suggested actions for various audit procedures. The data warehouse will be updated and enriched with new data instances through the application of deep learning and a human auditor's corrections. Finally, the paper discusses the challenges faced by the accounting profession, regulators, and educators when it comes to applying deep learning.


Author(s):  
Lucio Salles de Salles ◽  
Lev Khazanovich

The Pavement ME transverse joint faulting model incorporates mechanistic theories that predict development of joint faulting in jointed plain concrete pavements (JPCP). The model is calibrated using the Long-Term Pavement Performance database. However, the Mechanistic-Empirical Pavement Design Guide (MEPDG) encourages transportation agencies, such as state departments of transportation, to perform local calibrations of the faulting model included in Pavement ME. Model calibration is a complicated and effort-intensive process that requires high-quality pavement design and performance data. Pavement management data—which is collected regularly and in large amounts—may present higher variability than is desired for faulting performance model calibration. The MEPDG performance prediction models predict pavement distresses with 50% reliability. JPCP are usually designed for high levels of faulting reliability to reduce likelihood of excessive faulting. For design, improving the faulting reliability model is as important as improving the faulting prediction model. This paper proposes a calibration of the Pavement ME reliability model using pavement management system (PMS) data. It illustrates the proposed approach using PMS data from Pennsylvania Department of Transportation. Results show an increase in accuracy for faulting predictions using the new reliability model with various design characteristics. Moreover, the new reliability model allows design of JPCP considering higher levels of traffic because of the less conservative predictions.


2021 ◽  
Vol 11 (6) ◽  
pp. 2742
Author(s):  
Fatih Ünal ◽  
Abdulaziz Almalaq ◽  
Sami Ekici

Short-term load forecasting models play a critical role in distribution companies in making effective decisions in their planning and scheduling for production and load balancing. Unlike aggregated load forecasting at the distribution level or substations, forecasting load profiles of many end-users at the customer-level, thanks to smart meters, is a complicated problem due to the high variability and uncertainty of load consumptions as well as customer privacy issues. In terms of customers’ short-term load forecasting, these models include a high level of nonlinearity between input data and output predictions, demanding more robustness, higher prediction accuracy, and generalizability. In this paper, we develop an advanced preprocessing technique coupled with a hybrid sequential learning-based energy forecasting model that employs a convolution neural network (CNN) and bidirectional long short-term memory (BLSTM) within a unified framework for accurate energy consumption prediction. The energy consumption outliers and feature clustering are extracted at the advanced preprocessing stage. The novel hybrid deep learning approach based on data features coding and decoding is implemented in the prediction stage. The proposed approach is tested and validated using real-world datasets in Turkey, and the results outperformed the traditional prediction models compared in this paper.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Chyan-long Jan

Because of the financial information asymmetry, the stakeholders usually do not know a company’s real financial condition until financial distress occurs. Financial distress not only influences a company’s operational sustainability and damages the rights and interests of its stakeholders, it may also harm the national economy and society; hence, it is very important to build high-accuracy financial distress prediction models. The purpose of this study is to build high-accuracy and effective financial distress prediction models by two representative deep learning algorithms: Deep neural networks (DNN) and convolutional neural networks (CNN). In addition, important variables are selected by the chi-squared automatic interaction detector (CHAID). In this study, the data of Taiwan’s listed and OTC sample companies are taken from the Taiwan Economic Journal (TEJ) database during the period from 2000 to 2019, including 86 companies in financial distress and 258 not in financial distress, for a total of 344 companies. According to the empirical results, with the important variables selected by CHAID and modeling by CNN, the CHAID-CNN model has the highest financial distress prediction accuracy rate of 94.23%, and the lowest type I error rate and type II error rate, which are 0.96% and 4.81%, respectively.


Author(s):  
Lu Gao ◽  
Yao Yu ◽  
Yi Hao Ren ◽  
Pan Lu

Pavement maintenance and rehabilitation (M&R) records are important as they provide documentation that M&R treatment is being performed and completed appropriately. Moreover, the development of pavement performance models relies heavily on the quality of the condition data collected and on the M&R records. However, the history of pavement M&R activities is often missing or unavailable to highway agencies for many reasons. Without accurate M&R records, it is difficult to determine if a condition change between two consecutive inspections is the result of M&R intervention, deterioration, or measurement errors. In this paper, we employed deep-learning networks of a convolutional neural network (CNN) model, a long short-term memory (LSTM) model, and a CNN-LSTM combination model to automatically detect if an M&R treatment was applied to a pavement section during a given time period. Unlike conventional analysis methods so far followed, deep-learning techniques do not require any feature extraction. The maximum accuracy obtained for test data is 87.5% using CNN-LSTM.


Sign in / Sign up

Export Citation Format

Share Document