General models for topology layout of oil and gas star-tree pipeline network

2021 ◽  
pp. 1-22
Author(s):  
Jun Zhou ◽  
Daixin Zhang ◽  
Liuling Zhou ◽  
Guangchuan Liang ◽  
Xuan Zhou ◽  
...  

Oil&gas gathering pipeline network structure is a significant part of oil&gas field construction, and the rational construction of pipeline network is directly related to the efficiency and benefits of oil&gas field production. Therefore, optimizing the gathering and transportation system of oil and gas fields is the key to reducing development costs. The star-tree type pipe network is widely used in the gathering and transportation system. In order to optimize the star-tree pipe networks (STPNs) that has restrictions on the processing capacity and gathering radius of the station as a whole, this paper establishes four models of pipe network layout with specific constraints. They are Mixed-Integer Linear Programming Models with a large number of discrete variables. We take two virtual fields as examples, use CPLEX solver to solve the above four models as a whole, to obtain the optimal scheme, and also figure out the investment of the pipeline network. We further optimize the hierarchical optimization of the pipeline network with special constraints, then compare and analyze results obtained by the overall optimization. Finally, models are applied to an actual oil field and an actual gas field as examples to optimize the layout, which verifies the validity and feasibility of the models.

2018 ◽  
Vol 36 (5) ◽  
pp. 1172-1188 ◽  
Author(s):  
Zhuo Ning ◽  
Ze He ◽  
Sheng Zhang ◽  
Miying Yin ◽  
Yaci Liu ◽  
...  

Propane-oxidizing bacteria in surface soils are often used to indicate the position of oil and gas reservoirs. As a potential replacement for the laborious traditional culture-dependent counting method, we applied real-time fluorescent quantitative polymerase chain reaction detection as a quick and accurate technology for quantification of propane-oxidizing bacteria. The propane monooxygenase gene was set as the target and the assay is based on SYBR Green I dye. The detection range was from 9.75 × 108 to 9.75 × 101 gene copies/µl, with the lowest detected concentration of 9.75 copies/µl. All coefficient of variation values of the threshold cycle in the reproducibility test were better than 1%. The technique showed good sensitivity, specificity, and reproducibility. We also quantified the propane-oxidizing bacteria in soils from three vertical 250 cm profiles collected from an oil field, a gas field, and a nonoil gas field using the established technique. The results indicated that the presence of propane monooxygenase A genes in soils can indicate an oil or gas reservoir. Therefore, this technique can satisfy the requirements for microbial exploration of oil and gas.


1973 ◽  
Vol 13 (1) ◽  
pp. 166
Author(s):  
M. A. Stratton

The discovery by the partnership of Esso Exploration and Production Australia Inc. and Hematite Petroleum Pty Ltd during the past eight years of the natural gas and crude oil fields off the east Victorian coast has often been compared to that of gold in the State in the 1850's in its impact .on the economic, industrial and social life of the community.To date the amount spent in the State on the discovery and overall development of these fields is approximately $600 million. The value of oil and gas recovered over the period of nearly four years since production commenced in 1969 and distributed and utilised by various means to 31 December 1972, amounts to about $500 million. In addition the value of refined products from Victoria's three refineries and items produced by industrial processes through the use of natural gas and petroleum products as fuels, amount to many more millions of dollars. The total impact on Victoria in one form or another could, if measured in monetary value, he equivalent to about $1200 million-all in the course of about eight years.Other States have also benefited. The building of tankers, barges, tugs and work boats and the modification of refineries in New South Wales and Queensland, have probably cost in the region of $200 million whilst indirectly the success of the Gippsland oil and gas discoveries has spurred other explorers to step up the search in many areas and, as far as natural gas is concerned, with considerable success.The speed and efficiency with which the four gas and oil fields developed to date were brought into production, the necessary treatment plants erected, the pipelines laid and distribution facilities organised; and with which the gas industry changed over to the new fuel and refineries modified their processes to use indigenous crudes have, by world standards, been exceptional. From the time the first gas field-Barracouta, was found in February 1965 until the last oil field in the program -Kingfish came fully on stream late in 1971, less than seven years elapsed.During that time Victorian fuel patterns underwent vast changes. Today over 95% of all gas consumers are using natural gas and about 70% of crude processed by local refineries comes from the Gippsland Basin. The significance of natural gas in particular is demonstrated by a 41% increase in gas sales in Victoria in 1971/72 over the previous twelve months and this trend is expected to accelerate as a result of recent arrangements for the supply of large volumes of this fuel to industrial plants including paper mills, cement works and an alumina smelter.Also of major significance to the State has been the development of the port of Western Port where the loading of tankers and LPG carriers has resulted in it becoming the State's second busiest port. Of less immediate impact but still of great value in the long term, has been the building of better roads and facilities needed to service the installations and the emergence of many valuable skills in the petroleum industry which will make easier the task of future development of new fields and facilities in Victoria and other parts of Australia.


1984 ◽  
Vol 24 (1) ◽  
pp. 278
Author(s):  
H. T. Pecanek ◽  
I. M. Paton

The Tirrawarra Oil and Gas Field, discovered in 1970 in the South Australian portion of the Cooper Basin, is the largest onshore Permian oil field in Australia. Development began in 1981 as part of the $1400 million Cooper Basin Liquids ProjectThe field is contained within a broad anticline bisected by a north-south sealing normal fault. This fault divides the Tirrawarra oil reservoir into the Western and Main oil fields. Thirty-four wells have been drilled, intersecting ten Patchawarra Formation sandstone gas reservoirs and the Tirrawarra Sandstone oil reservoir. Development drilling discovered three further sandstone gas reservoirs in the Toolachee Formation.The development plan was based on a seven-spot pattern to allow for enhanced oil recovery by miscible gas drive. The target rates were 5400 barrels of oil (860 kilolitres) per day with 13 million ft3 (0.37 million m3) per day of associated gas and 70 million ft3 (2 million m') per day of wet, non-associated gas. Evaluation of early production tests showed rapid decline. The 100 ft (30 m) thick, low-permeability Tirrawarra oil reservoir was interpreted as an ideal reservoir for fracture treatment and as a result all oil wells have been successfully stimulated, with significant improvement in well production rates.The oil is highly volatile but miscibility with carbon dioxide has been proven possible by laboratory tests, even though the reservoir temperature is 285°F (140°C). Pilot gas injection will assess the feasibility of a larger-scale field-wide pressure maintenance scheme using miscible gas. Riot gas injection wells will use Tirrawarra Field Patchawarra Formation separator gas to defer higher infrastructure costs associated with the alternative option of piping carbon dioxide from Moomba, the nearest source.


1992 ◽  
Vol 114 (3) ◽  
pp. 165-174 ◽  
Author(s):  
E. M. Bitner-Gregersen ◽  
J. Lereim ◽  
I. Monnier ◽  
R. Skjong

A quantitative analysis of economic risk associated with large investments in offshore oil and gas field development and production is presented. The analysis is intended as a supporting tool in decision-making faced with uncertainty and risk, to study the effect of alternative decisions in an easy manner. The descriptors for the project assessment, such as the Internal Rate of Return (IRR) and Net Present Value (NPV) are applied. The study demonstrates first the impacts of early pilot production (EPP) prior to a main oil field development on the field economy of an oil field development and production installation. Furthermore, the result of cases which reflect relevant situations connected with cost overruns are presented, as well as derivation of rational decision criteria for termination/continuation of a project subjected to cost overruns. Finally, an oil field development project scheduling is demonstrated.


Author(s):  
O. R. Kondrat ◽  
O. A. Lukin

Oil production is a complex process that requires modern technologies, work experience and responsible personnel to implement cost-effective projects. Oil field exploitation processes stimulation or modeling is a method for researching exploitation objects on their analogs (models) in order to determine characteristics of available projected objects and make them distinct. The main objective of this research is to explore possibility and establishment of hydrodynamic stimulation results application effectiveness as a factor for decisions-making concerning oil or gas fields exploitation. The research, regarding optimization of oil field exploitation system, outlined the main directions and possibilities of oil extraction from depleted oil fields enhancement, and the hydrodynamic stimulation process as the main tool for solving such problems. The study of efficiency of oil and gas field development presupposed developing geological and technological model of a hypothetical deposit with technological indicators of a real Ukraine deposit. The hydrodynamic model was adapted for all wells according to actual data. All geological and technological measures, carried out in the sight, were also modelled. Field exploitation history was adapted. Oil field exploitation system was optimized by improving the reservoir pressure enhancement system in the real field. Different variants of field exploitation were  considered. They include the conversion of the producing well in the injection well, whereas the well in the vaulted part is injected.


Author(s):  
Yaroslav Adamenko ◽  
◽  
Mirela Coman ◽  
Oleh Adamenko ◽  

Environmentally safe oil and gas production demands permanent control for the development of ecological situation which should be managed on the basis of existing nature protection requirements and corresponding instruction documents. Purpose of the research and formulation of the problem is to select landscape complexes at the hierarchical levels of locations and facies in the Bykiv oil and gas field to make landscape map with morphological genetic and age features of landscape structure as the basis of environmental assessment of oil and gas field impact on the natural geosystems. Presentation of the main research material with full justification of the received scientific results. Landscape analysis of the investigated area allowed to select, ground and make mapping the following landscape complexes: landscape localities, foothill landscape complexes. Characteristic feature of the Bytkiv oil and gas field and neighborhoods is their high-altitude stratification from middle and lowmountainous to foothills and lowlands. The genesis or origin of the area under study is various - from denudation relics of the top peneplenization surface of leveling much younger pedyplenization surface pediments on the transition from mountainous to foothill relief, to deeply portioned erosionally active steep slopes and stairstepping of the river terraces. Age boundaries of the created landscape structures were determined on the availability of adjoint sedimentary formations from the producents of bedrock destruction, resedimented eolivan, deluvial, proluvial and alluvial processes.


2021 ◽  
pp. 1-9
Author(s):  
T. N. Demayo ◽  
N. K. Herbert ◽  
D. M. Hernandez ◽  
J. J. Hendricks ◽  
B. Velasquez ◽  
...  

Summary This paper outlines one of the first efforts by a major oil and gas company to build a net-exporting, behind-the-meter solar photovoltaic (PV) plant to lower the operating costs and carbon intensity of a large, mature oil and gas field. The 29 MWAC (35 MWDC) Lost Hills solar plant in Lost Hills, California, USA, commissioned in April 2020, covers approximately 220 acres on land adjacent to the oil field and is designed to provide more than 1.4 TWh of solar energy over 20 years to the field’s oil and gas production and processing facilities. The upgrades to the electrical infrastructure in the field also include new technology to reduce the risk of sulfur hexafluoride emissions, another potent greenhouse gas (GHG). Before the solar project, the Lost Hills field was importing all its electricity from the grid. With the introduction of the Innovative Crude Program as part of California’s Low Carbon Fuel Standard (LCFS) and revisions to the California Public Utilities Commission Net Energy Metering program, Lost Hills was presented with a unique opportunity to reduce its imported electricity expenses and reduce its carbon intensity, while also generating LCFS credits. The solar plant was designed to power the field during the day and export excess power to the grid to help offset nighttime electricity purchases. It operates under a power purchase agreement (PPA) with the solar PV provider and, initially, will meet approximately 80% of the oil field’s energy needs. Future plans include incorporating 20 MWh of lithium-ion batteries, direct current (DC)–coupled with the solar inverters. This energy storage system will increase the amount of solar electricity fed directly into the field and reduce costs by controlling when the site uses stored solar electricity rather than electricity from the grid. The battery system will also increase the number of LCFS credits by 15% over credits generated by solar alone. Together, solar power and energy storage provide a robust renewable energy solution. This project will generate multiple cobenefits for the Lost Hills oil field by lowering the cost of power, reducing GHG emissions, generating state LCFS credits and federal Renewable Energy Certificates, and demonstrating a commitment to energy transition by investing in renewable technology. Conceivably, the Lost Hills solar project can be a model for similar future projects in other oil fields, not only in California, but across the globe.


2021 ◽  
Vol 73 (10) ◽  
pp. 17-22
Author(s):  
Pat Davis Szymczak

It wasn’t too long ago that Arctic oil and gas exploration enjoyed celebrity status as the industry’s last frontier, chock full of gigantic unexplored hydrocarbon deposits just waiting to be developed. Fast forward and less than a decade later, the same climate change that made Arctic oil and gas more accessible has caused an about-face as governments and the world’s supranational energy companies rebrand and target control of greenhouse gases (GHG) to achieve carbon neutrality by 2050. Among countries with Arctic coastlines, Canada has focused its hydrocarbon production on its oil sands which sit well below the Arctic Circle; Greenland has decided to not issue any new offshore exploration licenses (https://jpt.spe.org/greenland-says-no-to-oil-but-yes-to-mining-metals-for-evs), and while Norway is offering licenses in its “High North,” the country can’t find many takers. The Norwegian Petroleum Directorate (NPD) reported that while 26 companies applied for licenses in 2013, this year’s bid round attracted only seven participants. Norway is Europe’s largest oil producer after Russia with half of its recoverable resources still undeveloped and most of that found in the Barents Sea where the NPD says only one oil field and one gas field are producing. That leaves Russia and the US—geopolitical rivals which are each blessed with large Arctic reserves and the infrastructure to develop those riches—but whose oil and gas industries play different roles in each nation’s economy and domestic political intrigues. Russia sees its Arctic reserves, particularly gas reserves, as vital to its national security, considering that oil and gas accounts for 60% of Russian exports and from 15 to 20% of the country’s gross domestic product (GDP), according to Russia’s Skolkovo Energy Centre. With navigation now possible year­round along the Northern Sea Route, Russia’s LNG champion and its largest independent gas producer, Novatek, is moving forward with exploration to expand its resource base and build infrastructure to ship product east to Asia and west to Europe. https://jpt.spe.org/russian­lng­aims­high­leveraging­big­reserves­and­logistical­advantages As a result, Russia’s state­owned majors—Rosneft, Gazprom, and Gazprom Neft—are lining up behind their IOC colleague as new investment in Arctic exploration and development is encouraged and rewarded by the Kremlin. In contrast, the American Petroleum Institute reports that the US oil and gas industry contributes 8% to US GDP, a statistic that enables the US to have a more diverse discussion than Russia about the role that oil and gas may play in any future energy mix. That is unless you happen to be from the state of Alaska where US Arctic oil and gas is synonymous with Alaskan oil and gas, and where the US Geological Survey estimates 27% of global unex­plored oil reserves may lie. Though Alaska is responsible for only 4% of US oil and gas production, those revenues covered two-thirds of Alaska’s state budget in 2020 despite the state’s decline in crude production in 28 of the past 32 years since it peaked at 2 million B/D in 1988, according to the US Energy Information Administration (EIA).


1971 ◽  
Vol 11 (1) ◽  
pp. 85 ◽  
Author(s):  
B. R. Griffith ◽  
E. A. Hodgson

The offshore Gippsland Basin, underlies the continental shelf and slope between eastern Victoria and Tasmania.The basin is filled with up to 25,000' of sediment, varying in age from Lower Cretaceous to Recent. The Lower Cretaceous section is represented by at least 10,000' of nonmarine greywackes of the Strzelecki Group. The overlying sediments of Upper Cretaceous to Eocene age comprise the interbedded sandstones, siltstones, shales and coals of the Latrobe Group, with a cumulative thickness of about 15,000'. Offshore, the Latrobe Group is overlain unconformably by up to 1500' of calcareous mudstones of the Lakes Entrance Formation and up to 5000' of Gippsland Limestone carbonates. Pliocene to Recent carbonates, reaching a maximum thickness of about 1000', complete the sedimentary section of the basin.Australia's first commercial offshore field, the Barracouta oil and gas field, was discovered in the Gippsland Basin in February 1965. Further exploratory drilling over the following two and a half years led to the discovery of the Marlin gas field and the Kingfish and Halibut oil fields.The principal hydrocarbon accumulations are reservoired by sediments of the Latrobe Group within closed structural highs on the Latrobe unconformity surface. Seal is provided by the mudstones and marls of the Lakes Entrance Formation and Gippsland Limestone.A field development programme was initiated immediately after Barracouta had been confirmed as a commercial gas reservoir. By the end of 1967, the Barracouta 'A' platform had been erected. Construction and positioning of the Marlin, Halibut and the two Kingfish platforms followed.To date development drilling has been completed on the Barracouta and Halibut fields, while development of the Marlin field has been temporarily suspended following completion of four wells. Development of the Kingfish oil field which commenced in March 1970, is still in a relatively early stage.The Barracouta field has been producing gas and oil since March and October, 1969 respectively. The Marlin gas field was put on stream in November, 1969 and the Halibut oil field in March 1970. As yet no wells drilled in the Kingfish oil field have been completed for production.The four fields provide a major source of hydrocarbons for the Australian market. By the end of September, 1970 cumulative production of sales quality gas from the Barracouta and Marlin fields was almost 23 BCF. Cumulative production of stabilised oil from Barracouta was 2 million barrels and over 26 million barrels from Halibut.


2021 ◽  
Author(s):  
Trevor N. Demayo ◽  
Nevil K. Herbert ◽  
Dulce M. Hernandez ◽  
Jana J. Hendricks ◽  
Beberly Velasquez ◽  
...  

Abstract This paper outlines one of the first efforts by a major oil and gas company to build a net exporting, behind the meter solar photovoltaic (PV) plant to lower the operating costs and carbon intensity of a large, mature oil and gas field in Lost Hills, California. The 29 MWAC (35 MWDC) Lost Hills solar plant, commissioned in April 2020, covers approximately 220 acres on land adjacent to the oil field and is designed to provide more than 1.4 billion kilowatt hours of solar energy over 20 years to the field's oil and gas field production and processing facilities. The upgrades to the electrical infrastructure in the field also include new technology to reduce the risk of sulfur hexafluoride (SF6) emissions, another potent greenhouse gas (GHG). Prior to solar, the Lost Hills field was importing all its electricity from the grid. With the introduction of the Innovative Crude Program as part of California's Low Carbon Fuel Standard (LCFS) and the revisions to the California Public Utilities Commission Net Energy Metering program, Lost Hills was presented with a unique opportunity to reduce its imported electricity expenses, reduce its carbon intensity, while also generating LCFS credits. The plant was designed to power the field during the day and export excess power to the grid to help offset night-time electricity purchases. The solar plant operates under a Power Purchase Agreement (PPA) with the solar PV provider and, initially, will meet approximately 80% of the oil field's energy needs. Future plans include the incorporation of lithium ion batteries, DC-coupled with the solar inverters, and with a total capacity of 20 MWh. This energy storage system will increase the amount of solar electricity fed directly into the field and reduce costs by controlling when the site uses stored solar electricity rather than electricity from the grid. The battery system will also increase the number of LCFS credits by 15% over credits generated by solar alone. Together, solar power plus energy storage provides a robust renewable energy solution. This project will generate multiple co-benefits for the Lost Hills oil field by lowering the cost of power, reducing GHG emissions, generating state LCFS credits and federal Renewable Energy Certificates, and demonstrating a commitment to energy transition by investing in renewable technology. Hopefully, Lost Hills solar can be a model for similar future projects in other oil fields, not only in California, but across the globe.


Sign in / Sign up

Export Citation Format

Share Document