Segmentation of wood cell in cross-section using deep convolutional neural networks

2021 ◽  
pp. 1-10
Author(s):  
Halime Ergun

Fiber and vessel structures located in the cross-section are anatomical features that play an important role in identifying tree species. In order to determine the microscopic anatomical structure of these cell types, each cell must be accurately segmented. In this study, a segmentation method is proposed for wood cell images based on deep convolutional neural networks. The network, which was developed by combining two-stage CNN structures, was trained using the Adam optimization algorithm. For evaluation, the method was compared with SegNet and U-Net architectures, trained with the same dataset. The losses in these models trained were compared using IoU (Intersection over Union), accuracy, and BF-score measurements on the test data. The automatic identification of the cells in the wood images obtained using a microscope will provide a fast, inexpensive, and reliable tool for those working in this field.

2021 ◽  
Vol 11 (20) ◽  
pp. 9468
Author(s):  
Yunyun Sun ◽  
Yutong Liu ◽  
Haocheng Zhou ◽  
Huijuan Hu

Deep learning proves its promising results in various domains. The automatic identification of plant diseases with deep convolutional neural networks attracts a lot of attention at present. This article extends stochastic gradient descent momentum optimizer and presents a discount momentum (DM) deep learning optimizer for plant diseases identification. To examine the recognition and generalization capability of the DM optimizer, we discuss the hyper-parameter tuning and convolutional neural networks models across the plantvillage dataset. We further conduct comparison experiments on popular non-adaptive learning rate methods. The proposed approach achieves an average validation accuracy of no less than 97% for plant diseases prediction on several state-of-the-art deep learning models and holds a low sensitivity to hyper-parameter settings. Experimental results demonstrate that the DM method can bring a higher identification performance, while still maintaining a competitive performance over other non-adaptive learning rate methods in terms of both training speed and generalization.


2015 ◽  
Author(s):  
David R. Kelley ◽  
Jasper Snoek ◽  
John Rinn

AbstractThe complex language of eukaryotic gene expression remains incompletely understood. Despite the importance suggested by many noncoding variants statistically associated with human disease, nearly all such variants have unknown mechanism. Here, we address this challenge using an approach based on a recent machine learning advance—deep convolutional neural networks (CNNs). We introduce an open source package Basset (https://github.com/davek44/Basset) to apply CNNs to learn the functional activity of DNA sequences from genomics data. We trained Basset on a compendium of accessible genomic sites mapped in 164 cell types by DNaseI-seq and demonstrate far greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for GWAS SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell’s chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Hwejin Jung ◽  
Bilal Lodhi ◽  
Jaewoo Kang

Abstract Background Since nuclei segmentation in histopathology images can provide key information for identifying the presence or stage of a disease, the images need to be assessed carefully. However, color variation in histopathology images, and various structures of nuclei are two major obstacles in accurately segmenting and analyzing histopathology images. Several machine learning methods heavily rely on hand-crafted features which have limitations due to manual thresholding. Results To obtain robust results, deep learning based methods have been proposed. Deep convolutional neural networks (DCNN) used for automatically extracting features from raw image data have been proven to achieve great performance. Inspired by such achievements, we propose a nuclei segmentation method based on DCNNs. To normalize the color of histopathology images, we use a deep convolutional Gaussian mixture color normalization model which is able to cluster pixels while considering the structures of nuclei. To segment nuclei, we use Mask R-CNN which achieves state-of-the-art object segmentation performance in the field of computer vision. In addition, we perform multiple inference as a post-processing step to boost segmentation performance. We evaluate our segmentation method on two different datasets. The first dataset consists of histopathology images of various organ while the other consists histopathology images of the same organ. Performance of our segmentation method is measured in various experimental setups at the object-level and the pixel-level. In addition, we compare the performance of our method with that of existing state-of-the-art methods. The experimental results show that our nuclei segmentation method outperforms the existing methods. Conclusions We propose a nuclei segmentation method based on DCNNs for histopathology images. The proposed method which uses Mask R-CNN with color normalization and multiple inference post-processing provides robust nuclei segmentation results. Our method also can facilitate downstream nuclei morphological analyses as it provides high-quality features extracted from histopathology images.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document