A new method of conflicting evidence management based on non-extensive entropy and Lance distance in uncertain scenarios

2021 ◽  
pp. 1-13
Author(s):  
Jianping Fan ◽  
Wei Zhou ◽  
Meiqin Wu

Handing uncertain information is one of the research focuses currently. For the sake of great ability of handing uncertain information, Dempster-Shafer evidence theory (D-S theory) has been widely used in various fields of uncertain information processing. However, when highly contradictory evidence appears, the results of the classical Dempster combination rules (DCR) can be counterintuitive. Aiming at this defect, by considering the relationship between the evidence and its own characteristics, the proposed method is a new method of conflicting evidence management based on non-extensive entropy and Lance distance in uncertain scenarios. Firstly, the Lance distance function is used to measure the degree of discrepancy and conflict between evidences, and the credibility of evidence is expressed by matrix. Introducing non-extensive entropy to measure the amount of information about evidence and express the uncertainty of evidence. Secondly, the discount coefficient of the final fusion evidence is measured by considering the credibility and uncertainty of the evidence, and the original evidence is modified by the discount coefficient. Then, the final result is obtained by evidence fusion with DCR. Finally, two numerical examples are provided to illustrate the efficiency of the proposed method, and the utility of our work is demonstrated through an application of the active lane change to avoid obstacles to the autonomous driving of new energy vehicles. The proposed method has a better identification accuracy, reaching 0.9811.

2015 ◽  
Vol 14 (05) ◽  
pp. 1017-1034 ◽  
Author(s):  
Jian-Ping Yang ◽  
Hong-Zhong Huang ◽  
Yu Liu ◽  
Yan-Feng Li

Although Dempster–Shafer (D–S) evidence theory and its reasoning mechanism can deal with imprecise and uncertain information by combining cumulative evidences for changing prior opinions of new evidences, there is a deficiency in applying classical D–S evidence theory combination rule when conflict evidence appear — conflict evidence causes counter-intuitive results. To address this issue, alternative combination rules have been proposed for resolving the appeared conflicts of evidence. An underlying assumption is that conflict evidences exist, which, however, is not always true. Moreover, it has been verified that conflict factors may not be accurate to characterize the degree of conflict. Instead, the Jousselme distance has been regarded as a quantification criterion for the degree of conflict because of its promising properties. To avoid the counter-intuitive results, multiple sources of evidence should be classified first. This paper proposes a novel algorithm to quantify the classification of multiple sources of evidence based on a core vector method, and the algorithm is further verified by two examples. This study also explores the relationship between complementary information and conflicting evidence and discusses the stochastic interpretation of basic probability assignment functions.


2013 ◽  
Vol 303-306 ◽  
pp. 900-903
Author(s):  
Bo Chen ◽  
Chuan Bao Jia ◽  
Ji Cai Feng

To solve the problem of conflict confidence in D-S evidence theory, this paper proposed a new method. First a distance function was introduced, then the supporting degree of the evidence by other evidences was calculated, and the BPAs of the evidences were modified by the supporting degree using fuzzy inference theory, and the modified evidences were fused by D-S combination rules. Experiment result showed the effectiveness of the method.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1292
Author(s):  
Yutong Chen ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely used in the field of data fusion. However, with further research, incomplete information under the open world assumption has been discovered as a new type of uncertain information. The classical Dempster’s combination rules are difficult to solve the related problems of incomplete information under the open world assumption. At the same time, partial information entropy, such as the Deng entropy is also not applicable to deal with problems under the open world assumption. Therefore, this paper proposes a new method framework to process uncertain information and fuse incomplete data. This method is based on an extension to the Deng entropy in the open world assumption, negation of basic probability assignment (BPA), and the generalized combination rule. The proposed method can solve the problem of incomplete information under the open world assumption, and obtain more uncertain information through the negative processing of BPA, which improves the accuracy of the results. The results of applying this method to fault diagnosis of electronic rotor examples show that, compared with the other uncertain information processing and fusion methods, the proposed method has wider adaptability and higher accuracy, and is more conducive to practical engineering applications.


Author(s):  
Zezheng Yan ◽  
Hanping Zhao ◽  
Xiaowen Mei

AbstractDempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, the results are counterintuitive when highly conflicting evidence is fused with Dempster’s rule of combination. Many improved combination methods have been developed to address conflicting evidence. Nevertheless, all of these approaches have inherent flaws. To solve the existing counterintuitive problem more effectively and less conservatively, an improved combination method for conflicting evidence based on the redistribution of the basic probability assignment is proposed. First, the conflict intensity and the unreliability of the evidence are calculated based on the consistency degree, conflict degree and similarity coefficient among the evidence. Second, the redistribution equation of the basic probability assignment is constructed based on the unreliability and conflict intensity, which realizes the redistribution of the basic probability assignment. Third, to avoid excessive redistribution of the basic probability assignment, the precision degree of the evidence obtained by information entropy is used as the correction factor to modify the basic probability assignment for the second time. Finally, Dempster’s rule of combination is used to fuse the modified basic probability assignment. Several different types of examples and actual data sets are given to illustrate the effectiveness and potential of the proposed method. Furthermore, the comparative analysis reveals the proposed method to be better at obtaining the right results than other related methods.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 820
Author(s):  
Jingyu Liu ◽  
Yongchuan Tang

The multi-agent information fusion (MAIF) system can alleviate the limitations of a single expert system in dealing with complex situations, as it allows multiple agents to cooperate in order to solve problems in complex environments. Dempster–Shafer (D-S) evidence theory has important applications in multi-source data fusion, pattern recognition, and other fields. However, the traditional Dempster combination rules may produce counterintuitive results when dealing with highly conflicting data. A conflict data fusion method in a multi-agent system based on the base basic probability assignment (bBPA) and evidence distance is proposed in this paper. Firstly, the new bBPA and reconstructed BPA are used to construct the initial belief degree of each agent. Then, the information volume of each evidence group is obtained by calculating the evidence distance so as to modify the reliability and obtain more reasonable evidence. Lastly, the final evidence is fused with the Dempster combination rule to obtain the result. Numerical examples show the effectiveness and availability of the proposed method, which improves the accuracy of the identification process of the MAIF system.


2018 ◽  
Vol 14 (04) ◽  
pp. 4
Author(s):  
Xuemei Yao ◽  
Shaobo Li ◽  
Yong Yao ◽  
Xiaoting Xie

As the information measured by a single sensor cannot reflect the real situation of mechanical devices completely, a multi-sensor data fusion based on evidence theory is introduced. Evidence theory has the advantage of dealing with uncertain information. However, it produces unreasonable conclusions when the evidence conflicts. An improved fusion method is proposed to solve this problem. Basic probability assignment of evidence is corrected according to evidence and sensor weights, and an optimal fusion algorithm is selected by comparing an introduced threshold and a conflict factor. The effectiveness and practicability of the algorithm are tested by simulating the monitoring and diagnosis of rolling bearings. The result shows that the method has better robustness.


Author(s):  
Sofiia Alpert

The process of solution of different practical and ecological problems, using hyperspectral satellite images usually includes a procedure of classification. Classification is one of the most difficult and important procedures. Some image classification methods were considered and analyzed in this work. These methods are based on the theory of evidence. Evidence theory can simulate uncertainty and process imprecise and incomplete information. It were considered such combination rules in this paper: “mixing” combination rule (or averaging), convolutive x-averaging (or c-averaging) and Smet’s combination rule. It was shown, that these methods can process the data from multiple sources or spectral bands, that provide different assessments for the same hypotheses. It was noted, that the purpose of aggregation of information is to simplify data, whether the data is coming from multiple sources or different spectral bands. It was shown, that Smet’s rule is unnormalized version of Dempster rule, that applied in Smet’s Transferable Belief Model. It also processes imprecise and incomplete data. Smet’s combination rule entails a slightly different formulation of Dempster-Shafer theory. Mixing (or averaging) rule was considered in this paper too. It is the averaging operation that is used for probability distributions. This rule uses basic probability assignments from different sources (spectral bands) and weighs assigned according to the reliability of the sources. Convolutive x-averaging (or c-averaging) rule was considered in this paper too. This combination rule is a generalization of the average for scalar numbers. This rule is commutative and not associative. It also was noted, that convolutive x-averaging (c-averaging) rule can include any number of basic probability assignments. It were also considered examples, where these proposed combination rules were used. Mixing, convolutive x-averaging (c-averaging) rule and Smet’s combination rule can be applied for analysis of hyperspectral satellite images, in remote searching for minerals and oil, solving different environmental and thematic problems.


Author(s):  
Lipeng Pan ◽  
Yong Deng

Dempster-Shafer evidence theory can handle imprecise and unknown information, which has attracted many people. In most cases, the mass function can be translated into the probability, which is useful to expand the applications of the D-S evidence theory. However, how to reasonably transfer the mass function to the probability distribution is still an open issue. Hence, the paper proposed a new probability transform method based on the ordered weighted averaging and entropy difference. The new method calculates weights by ordered weighted averaging, and adds entropy difference as one of the measurement indicators. Then achieved the transformation of the minimum entropy difference by adjusting the parameter r of the weight function. Finally, some numerical examples are given to prove that new method is more reasonable and effective.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Harish Garg ◽  
R. Sujatha ◽  
D. Nagarajan ◽  
J. Kavikumar ◽  
Jeonghwan Gwak

Picture fuzzy set is the most widely used tool to handle the uncertainty with the account of three membership degrees, namely, positive, negative, and neutral such that their sum is bound up to 1. It is the generalization of the existing intuitionistic fuzzy and fuzzy sets. This paper studies the interval probability problems of the picture fuzzy sets and their belief structure. The belief function is a vital tool to represent the uncertain information in a more effective manner. On the other hand, the Dempster–Shafer theory (DST) is used to combine the independent sources of evidence with the low conflict. Keeping the advantages of these, in the present paper, we present the concept of the evidence theory for the picture fuzzy set environment using DST. Under this, we define the concept of interval probability distribution and discuss its properties. Finally, an illustrative example related to the decision-making process is employed to illustrate the application of the presented work.


Sign in / Sign up

Export Citation Format

Share Document