Artificial intelligence based prediction models: sales forecasting application in automotive aftermarket

2021 ◽  
pp. 1-13
Author(s):  
Mert Girayhan Türkbayrağí ◽  
Elif Dogu ◽  
Y. Esra Albayrak

Automotive aftermarket industry is possessed of a wide product portfolio range which is in the 4th rank by its worldwide trade volume. The demand characteristic of automotive aftermarket parts is volatile and uncertain. Nevertheless, the cause-and-effect relationship of automotive aftermarket industry has not been defined obviously heretofore. These conditions bring automotive aftermarket sales forecasting into a challenging process. This paper is composed to determine the relevant external factors for automotive aftermarket sales based on expert reviews and to propose a sales forecasting model for automotive aftermarket industry. Since computational intelligence techniques yield a framework to focus on predictive analytics and prescriptive analytics, an artificial neural network model constructed for Turkey automotive aftermarket industry. Artificial intelligence is a subset of computational intelligence that focused on problems which have complex and nonlinear relationships. The data which have complex and nonlinear relationships could be modelled successfully even though incomplete data in case of implementation of appropriate model. The proposed ANN model for sales forecast is compared with multiple linear regression and revealed a higher prediction performance.

2021 ◽  
pp. 1-59
Author(s):  
Han Shi Jocelyn CHEW ◽  
Wei How Darryl ANG ◽  
Ying LAU

Abstract Objective: To present an overview of how artificial intelligence (AI) could be used to regulate eating and dietary behaviours, exercise behaviours and weight loss. Design: A scoping review of global literature published from inception to 15 December 2020 was conducted according to Arksey and O’Malley’s five-step framework. Eight databases (CINAHL, Cochrane–Central, Embase, IEEE Xplore, PsycINFO, PubMed, Scopus and Web of Science) were searched. Included studies were independently screened for eligibility by two reviewers with good interrater reliability (k= 0.96). Results: 66 out of 5573 potential studies were included, representing more than 2,031 participants. Three tenets of self-regulation were identified - self-monitoring (n=66, 100%), optimization of goal-setting (n=10, 15.2%) and self-control (n= 10, 15.2%). Articles were also categorised into three AI applications namely machine perception (n=50), predictive analytics only (n=6), and real-time analytics with personalised micro-interventions (n=10). Machine perception focused on recognizing food items, eating behaviours, physical activities and estimating energy balance. Predictive analytics focused on predicting weight loss, intervention adherence, dietary lapses and emotional eating. Studies on the last theme focused on evaluating AI-assisted weight management interventions that instantaneously collected behavioural data, optimised prediction models for behavioural lapse events and enhance behavioural self-control through adaptive and personalized nudges/prompts. Only six studies reported average weight losses (2.4% to 4.7%) of which two were statistically significant. Conclusion: The use of AI for weight loss is still undeveloped. Based on this study findings, we proposed a framework on the applicability of AI for weight loss but cautioned its contingency upon engagement and contextualisation.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
S Ram

Abstract With rapid developments in big data technology and the prevalence of large-scale datasets from diverse sources, the healthcare predictive analytics (HPA) field is witnessing a dramatic surge in interest. In healthcare, it is not only important to provide accurate predictions, but also critical to provide reliable explanations to the underlying black-box models making the predictions. Such explanations can play a crucial role in not only supporting clinical decision-making but also facilitating user engagement and patient safety. If users and decision makers do not have faith in the HPA model, it is highly likely that they will reject its use. Furthermore, it is extremely risky to blindly accept and apply the results derived from black-box models, which might lead to undesirable consequences or life-threatening outcomes in domains with high stakes such as healthcare. As machine learning and artificial intelligence systems are becoming more capable and ubiquitous, explainable artificial intelligence and machine learning interpretability are garnering significant attention among practitioners and researchers. The introduction of policies such as the General Data Protection Regulation (GDPR), has amplified the need for ensuring human interpretability of prediction models. In this talk I will discuss methods and applications for developing local as well as global explanations from machine learning and the value they can provide for healthcare prediction.


2020 ◽  
Vol 17 (6) ◽  
pp. 76-91
Author(s):  
E. D. Solozhentsev

The scientific problem of economics “Managing the quality of human life” is formulated on the basis of artificial intelligence, algebra of logic and logical-probabilistic calculus. Managing the quality of human life is represented by managing the processes of his treatment, training and decision making. Events in these processes and the corresponding logical variables relate to the behavior of a person, other persons and infrastructure. The processes of the quality of human life are modeled, analyzed and managed with the participation of the person himself. Scenarios and structural, logical and probabilistic models of managing the quality of human life are given. Special software for quality management is described. The relationship of human quality of life and the digital economy is examined. We consider the role of public opinion in the management of the “bottom” based on the synthesis of many studies on the management of the economics and the state. The bottom management is also feedback from the top management.


Author(s):  
Sunil K. Deokar ◽  
Nachiket A. Gokhale ◽  
Sachin A. Mandavgane

Abstract Biomass ashes like rice husk ash (RHA), bagasse fly ash (BFA), were used for aqueous phase removal of a pesticide, diuron. Response surface methodology (RSM) and artificial neural network (ANN) were successfully applied to estimate and optimize the conditions for the maximum diuron adsorption using biomass ashes. The effect of operational parameters such as initial concentration (10–30 mg/L); contact time (0.93–16.07 h) and adsorbent dosage (20–308 mg) on adsorption were studied using central composite design (CCD) matrix. Same design was also employed to gain a training set for ANN. The maximum diuron removal of 88.95 and 99.78% was obtained at initial concentration of 15 mg/L, time of 12 h, RHA dosage of 250 mg and at initial concentration of 14 mg/L, time of 13 h, BFA dosage of 60 mg respectively. Estimation of coefficient of determination (R 2) and mean errors obtained for ANN and RSM (R 2 RHA = 0.976, R 2 BFA = 0.943) proved ANN (R 2 RHA = 0.997, R 2 BFA = 0.982) fits better. By employing RSM coupled with ANN model, the qualitative and quantitative activity relationship of experimental data was visualized in three dimensional spaces. The current approach will be instrumental in providing quick preliminary estimations in process and product development.


Author(s):  
Anil Babu Payedimarri ◽  
Diego Concina ◽  
Luigi Portinale ◽  
Massimo Canonico ◽  
Deborah Seys ◽  
...  

Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health interventions aimed to flatten the epidemiological curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also showed positive impact, whereas social distancing should be considered to be effective only in combination with other interventions including the closure of schools and commercial activities and the limitation of public transportation. Our findings also showed that all the interventions should be initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we concluded that AI and ML could be of help for policy makers to define the strategies for containing the COVID-19 pandemic.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2332
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


2013 ◽  
Vol 15 (4) ◽  
pp. 1474-1490 ◽  
Author(s):  
Ata Allah Nadiri ◽  
Elham Fijani ◽  
Frank T.-C. Tsai ◽  
Asghar Asghari Moghaddam

The study introduces a supervised committee machine with artificial intelligence (SCMAI) method to predict fluoride in ground water of Maku, Iran. Ground water is the main source of drinking water for the area. Management of fluoride anomaly needs better prediction of fluoride concentration. However, the complex hydrogeological characteristics cause difficulties to accurately predict fluoride concentration in basaltic formation, non-basaltic formation, and mixing zone. SCMAI predicts fluoride by a nonlinear combination of individual AI models through an artificial intelligent system. Factor analysis is used to identify effective fluoride-correlated hydrochemical parameters as input to AI models. Four AI models, Sugeno fuzzy logic, Mamdani fuzzy logic, artificial neural network (ANN), and neuro-fuzzy are employed to predict fluoride concentration. The results show that all of these models have similar fitting to the fluoride data in the Maku area, and do not predict well for samples in the mixing zone. The SCMAI employs an ANN model to re-predict the fluoride concentration based on the four AI model predictions. The result shows improvement to the CMAI method, a committee machine with the linear combination of AI model predictions. The results also show significant fitting improvement to individual AI models, especially for fluoride prediction in the mixing zone.


Author(s):  
Wael H. Awad ◽  
Bruce N. Janson

Three different modeling approaches were applied to explain truck accidents at interchanges in Washington State during a 27-month period. Three models were developed for each ramp type including linear regression, neural networks, and a hybrid system using fuzzy logic and neural networks. The study showed that linear regression was able to predict accident frequencies that fell within one standard deviation from the overall mean of the dependent variable. However, the coefficient of determination was very low in all cases. The other two artificial intelligence (AI) approaches showed a high level of performance in identifying different patterns of accidents in the training data and presented a better fit when compared to the regression model. However, the ability of these AI models to predict test data that were not included in the training process showed unsatisfactory results.


Sign in / Sign up

Export Citation Format

Share Document