Age-dependent neurobehavioral responses by young and mature adult rats to systemic kainic acid

1996 ◽  
Vol 10 (2) ◽  
pp. 103-108
Author(s):  
Cesario V. Borlongan ◽  
Kimberly B. Bjugstad ◽  
Christine E. Stahl ◽  
Shajmil D. Ross ◽  
Gary W. Arendash ◽  
...  
2014 ◽  
Vol 111 (6) ◽  
pp. 1369-1382 ◽  
Author(s):  
Ann M. Clemens ◽  
Daniel Johnston

Disruptions of endoplasmic reticulum (ER) Ca2+ homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca2+ stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific ( h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca2+-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca2+ channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.


ACS Nano ◽  
2018 ◽  
Vol 12 (8) ◽  
pp. 7771-7790 ◽  
Author(s):  
Wolfgang G. Kreyling ◽  
Winfried Möller ◽  
Uwe Holzwarth ◽  
Stephanie Hirn ◽  
Alexander Wenk ◽  
...  

Author(s):  
Anders Björklund ◽  
Fred H. Gage

During the last few years evidence has accumulated that fetal neurons, implanted into the depth of the brain in adult rats, can reestablish damaged connections in the host brain and substitute functionally for elements lost or damaged as a result of a preceding lesion. This research work has led to the realization that, contrary to traditional views, the adult mammalian CNS has a potential to incorporate new neuronal elements into already established neuronal circuitry and that such implanted neurons can modify the function and behavior of the recipient. For a long time it was thought that the remarkable regenerative and functional potential of CNS tissue grafts that had been demonstrated in cold-blooded vertebrates reflected a fundamental difference in the regenerative properties of central nervous tissue between cold-blooded vertebrates and mammals. During the last few years it has become evident however, that at least certain types of intracerebral neural grafts can perfoum just as well in developing and mammals as in developing or adult submammalian vertebrates.


2015 ◽  
Vol 308 (5) ◽  
pp. F411-F419 ◽  
Author(s):  
German Lozano ◽  
Ayah Elmaghrabi ◽  
Jordan Salley ◽  
Khurrum Siddique ◽  
Jyothsna Gattineni ◽  
...  

The present study examined whether a prenatal low-protein diet programs a decrease in glomerular filtration rate (GFR) and an increase in systolic blood pressure (BP). In addition, we examined whether altering the postnatal nutritional environment of nursing neonatal rats affected GFR and BP when rats were studied as adults. Pregnant rats were fed a normal (20%) protein diet or a low-protein diet (6%) during the last half of pregnancy until birth, when rats were fed a 20% protein diet. Mature adult rats from the prenatal low-protein group had systolic hypertension and a GFR of 0.38 ± 0.03 versus 0.57 ± 0.05 ml·min−1·100 g body wt−1 in the 20% group ( P < 0.01). In cross-fostering experiments, mothers continued on the same prenatal diet until weaning. Prenatal 6% protein rats cross-fostered to a 20% mother on day 1 of life had a GFR of 0.53 ± 0.05 ml·min−1·100 g body wt−1, which was not different than the 20% group cross-fostered to a different 20% mother (0.45 ± 0.04 ml·min−1·100 g body wt−1). BP in the 6% to 20% group was comparable with the 20% to 20% group. Offspring of rats fed either 20% or 6% protein diets during pregnancy and cross-fostered to a 6% mother had elevated BP but a comparable GFR normalized to body weight as the 20% to 20% control group. Thus, a prenatal low-protein diet causes hypertension and a reduction in GFR in mature adult offspring, which can be modified by postnatal rearing.


Bone ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 149-157 ◽  
Author(s):  
S.A Bloomfield ◽  
M.R Allen ◽  
H.A Hogan ◽  
M.D Delp

2018 ◽  
Vol 243 (12) ◽  
pp. 976-984 ◽  
Author(s):  
Raji Lenin ◽  
Peter G Nagy ◽  
Jordy Gentry ◽  
Rajashekhar Gangaraju

Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model. To address this, we employed a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice at 5 and 10 months of age. Visual deficits were exhibited by tie2-TNF mice at both 5 months and 10 months of age, with the older mice showing statistically significant loss of visual acuity compared with tie2-TNF mice at age 5 months. The neural defects, as measured by electroretinogram (ERG), also followed a similar trend in an age-dependent fashion, with 10-month-old tie2-TNF mice showing the greatest decrease in “b” wave amplitude at 25 cd.s.m2 compared with age-matched wildtype (WT) mice and five-month-old tie2-TNF mice. While gene and protein expression from the whole retinal extracts demonstrated increased inflammatory (Icam1, Ccl2), stress-associated premature senescence (p16, p21, p53), and ER stress (Grp78, p-Ire1α, Chop) markers in five-month-old tie2-TNF mice compared with five-month-old WT mice, a further increase was seen in 10-month-old tie2-TNF mice. Our data demonstrate that tie2-TNF mice exhibit age-associated increases in visual deficits, and these data suggest that inflammatory endothelial activation is at least partly at play. Given the correlation of increased premature senescence and ER stress in an age-dependent fashion, with the loss of visual functions and increased endothelial activation, our data suggest a possible self-enhanced loop of unfolded protein response pathways and senescence in propagating neurovascular defects in this model. Impact statement Vision loss in most retinal diseases affects the quality of life of working age adults. Using a novel animal model that displays constant endothelial activation by tmTNF-α, our results demonstrate exacerbated age-induced visual deficits via premature senescence-mediated ER stress. We have compared mice of 5 and 10 months of age, with highly relevant human equivalencies of approximately 35- and 50-year-old patients, representing mature adult and middle-aged subjects, respectively. Our studies suggest a possible role for a self-enhanced loop of ER stress pathways and senescence in the propagation of retinal neurovascular defects, under conditions of constant endothelial activation induced by tmTNF-α signaling.


2004 ◽  
Vol 89 (9) ◽  
pp. 4601-4606 ◽  
Author(s):  
Ashraf F. Kamel ◽  
Svante Norgren ◽  
Karin Strigård ◽  
Anders Thörne ◽  
Hossein Fakhrai-Rad ◽  
...  

The regulation of adipocyte metabolism is of importance for adipose tissue growth and therefore also for the development of obesity. This study was designed to investigate the regulation of basal and insulin-induced lipogenesis, glucose transport, and glucose transporter protein expression in human and rat adipocytes from different age groups. The study included 21 infants, 21 children, nine adults, and 80 male weaned and 20 male adult Fischer rats. The lipogenesis experiments were performed under conditions at which glucose transport is rate limiting. Basal lipogenesis was approximately three times higher in infants and children than in adults, whereas insulin-induced lipogenesis was two times higher in infants than in children and adults. In rats, basal lipogenesis, insulin-induced lipogenesis, and insulin sensitivity were two times higher in weaned than in adult animals. Moreover, basal and insulin-induced glucose transport were two times higher in weaned than in adult rats. No differences were detected in GLUT1 or GLUT4 content between any of the age groups in human or in rat adipocytes. In conclusion, basal and insulin-stimulated lipogenesis are increased in adipocytes early in life. This may promote adipose tissue growth in early age. The data indicate that age-dependent variation in basal and insulin-stimulated lipogenesis is differently regulated.


2011 ◽  
Vol 301 (2) ◽  
pp. R491-R499 ◽  
Author(s):  
John T. Liles ◽  
Kevin K. Ida ◽  
Kristin M. Joly ◽  
Joseph Chapo ◽  
Craig F. Plato

Contractile reserve decreases with advancing age and chronic isoproterenol (ISO) administration is a well-characterized model of cardiac hypertrophy known to impair cardiovascular function. This study evaluated whether nonsenescent, mature adult rats are more susceptible to detrimental effects of chronic ISO administration than younger adult rats. Rats received daily injections of ISO (0.1 mg/kg sc) or vehicle for 3 wk. ISO induced a greater impairment in contractile reserve [maximum of left ventricular pressure development (Δ+dP/d tmax)] in mature adult ISO-treated (MA-ISO) than in young adult ISO-treated rats (YA-ISO) in response to infusions of mechanistically distinct inotropes (digoxin, milrinone; 20–200 μl·kg−1·min−1), while basal and agonist-induced changes in heart rate and systolic arterial pressure (SAP) were not different across groups. ISO decreased expression of the calcium handling protein, sarco(endo)plasmic reticulum Ca2+-ATPase-2a, in MA-ISO compared with YA, YA-ISO, and MA rats. Chronic ISO also induced greater increases in cardiac hypertrophy [left ventricular (LV) index: 33 ± 3 vs. 22 ± 5%] and caspase-3 activity (34 vs. 5%) in MA-ISO relative to YA-ISO rats. Moreover, β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF) mRNA expression was significantly elevated in MA-ISO. These results demonstrate that adult rats develop greater impairments in systolic performance than younger rats when exposed to chronic catecholamine excess. Reduced contractile reserve may result from calcium dysregulation, increased caspase-3 activity, or increased β-MHC and ANF expression. Although several studies report age-related declines in systolic performance in older and senescent animals, the present study demonstrates that catecholamine excess induces reductions in systolic performance significantly earlier in life.


Sign in / Sign up

Export Citation Format

Share Document