scholarly journals Integrating Healthcare Data for Enhanced Citizen-Centred Care and Analytics

Author(s):  
Juliana K.F. Bowles ◽  
Juan Mendoza-Santana ◽  
Andreas F. Vermeulen ◽  
Thais Webber ◽  
Euan Blackledge

The potential of healthcare systems worldwide is expanding as new medical devices and data sources are regularly presented to healthcare providers which could be used to personalise, improve and revise treatments further. However, there is presently a large gap between the data collected, the systems that store the data, and any ability to perform big data analytics to combinations of such data. This paper suggests a novel approach to integrate data from multiple sources and formats, by providing a uniform structure to the data in a healthcare data lake with multiple zones reflecting how refined the data is: from raw to curated when ready to be consumed or used for analysis. The integration further requires solutions that can be proven to be secure, such as patient-centric data sharing agreements (smart contracts) on a blockchain, and novel privacy-preserving methods for extracting metadata from data sources, originally derived from partially-structured or from completely unstructured data. Work presented here is being developed as part of an EU project with the ultimate aim to develop solutions for integrating healthcare data for enhanced citizen-centred care and analytics across Europe.

Author(s):  
Ellsworth M. Campbell ◽  
Anthony Boyles ◽  
Anupama Shankar ◽  
Jay Kim ◽  
Sergey Knyazev ◽  
...  

AbstractMotivationOutbreak investigations use data from interviews, healthcare providers, laboratories and surveillance systems. However, integrated use of data from multiple sources requires a patchwork of software that present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization and analysis of data from multiple sources can guide effective public health interventions.ResultsWe developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data integration and exploration in molecular epidemiology. Using publicly available HIV sequences and other data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South Korea in early 2020.Availability and ImplementationMicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs in Chromium-based browsers and remains fully-operational without an internet connection. MicrobeTrace is developed and actively maintained by the Centers for Disease Control and Prevention. The source code is available at https://github.com/cdcgov/[email protected]


2021 ◽  
Vol 17 (9) ◽  
pp. e1009300 ◽  
Author(s):  
Ellsworth M. Campbell ◽  
Anthony Boyles ◽  
Anupama Shankar ◽  
Jay Kim ◽  
Sergey Knyazev ◽  
...  

Outbreak investigations use data from interviews, healthcare providers, laboratories and surveillance systems. However, integrated use of data from multiple sources requires a patchwork of software that present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization and analysis of data from multiple sources can guide effective public health interventions. We developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data integration and exploration in molecular epidemiology. MicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs in Chromium-based browsers and remains fully operational without an internet connection. Using publicly available data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South Korea in early 2020. MicrobeTrace is developed and actively maintained by the Centers for Disease Control and Prevention. Users can email [email protected] for support. The source code is available at https://github.com/cdcgov/microbetrace.


2021 ◽  
Vol 15 (01) ◽  
pp. 117-139
Author(s):  
Maria Krommyda ◽  
Verena Kantere

As the Internet of Things (IoT) systems gain in popularity, an increasing number of Big Data sources are available. Ranging from small sensor networks designed for household use to large fully automated industrial environments, the IoT systems create billions of measurements each second making traditional storage and indexing solutions obsolete. While research around Big Data has focused on scalable solutions that can support the datasets produced by these systems, the focus has been mainly on managing the volume and velocity of these data, rather than providing efficient solutions for their retrieval and analysis. A key characteristic of these data, which is, more often than not, overlooked, is the spatial information that can be used to integrate data from multiple sources and conduct multi-dimensional analysis of the collected information. We present here the solutions currently available for the storage and indexing of spatial datasets produced by the IoT systems and we discuss their applicability in real-world scenarios.


2019 ◽  
Vol 29 (Supplement_3) ◽  
pp. 23-27 ◽  
Author(s):  
Roberta Pastorino ◽  
Corrado De Vito ◽  
Giuseppe Migliara ◽  
Katrin Glocker ◽  
Ilona Binenbaum ◽  
...  

Abstract Healthcare systems around the world are facing incredible challenges due to the ageing population and the related disability, and the increasing use of technologies and citizen’s expectations. Improving health outcomes while containing costs acts as a stumbling block. In this context, Big Data can help healthcare providers meet these goals in unprecedented ways. The potential of Big Data in healthcare relies on the ability to detect patterns and to turn high volumes of data into actionable knowledge for precision medicine and decision makers. In several contexts, the use of Big Data in healthcare is already offering solutions for the improvement of patient care and the generation of value in healthcare organizations. This approach requires, however, that all the relevant stakeholders collaborate and adapt the design and performance of their systems. They must build the technological infrastructure to house and converge the massive volume of healthcare data, and to invest in the human capital to guide citizens into this new frontier of human health and well-being. The present work reports an overview of best practice initiatives in Europe related to Big Data analytics in public health and oncology sectors, aimed to generate new knowledge, improve clinical care and streamline public health surveillance.


Author(s):  
S. Karthiga Devi ◽  
B. Arputhamary

Today the volume of healthcare data generated increased rapidly because of the number of patients in each hospital increasing.  These data are most important for decision making and delivering the best care for patients. Healthcare providers are now faced with collecting, managing, storing and securing huge amounts of sensitive protected health information. As a result, an increasing number of healthcare organizations are turning to cloud based services. Cloud computing offers a viable, secure alternative to premise based healthcare solutions. The infrastructure of Cloud is characterized by a high volume storage and a high throughput. The privacy and security are the two most important concerns in cloud-based healthcare services. Healthcare organization should have electronic medical records in order to use the cloud infrastructure. This paper surveys the challenges of cloud in healthcare and benefits of cloud techniques in health care industries.


2021 ◽  
Vol 13 ◽  
pp. 175628722199813
Author(s):  
B. M. Zeeshan Hameed ◽  
Aiswarya V. L. S. Dhavileswarapu ◽  
Nithesh Naik ◽  
Hadis Karimi ◽  
Padmaraj Hegde ◽  
...  

Artificial intelligence (AI) has a proven record of application in the field of medicine and is used in various urological conditions such as oncology, urolithiasis, paediatric urology, urogynaecology, infertility and reconstruction. Data is the driving force of AI and the past decades have undoubtedly witnessed an upsurge in healthcare data. Urology is a specialty that has always been at the forefront of innovation and research and has rapidly embraced technologies to improve patient outcomes and experience. Advancements made in Big Data Analytics raised the expectations about the future of urology. This review aims to investigate the role of big data and its blend with AI for trends and use in urology. We explore the different sources of big data in urology and explicate their current and future applications. A positive trend has been exhibited by the advent and implementation of AI in urology with data available from several databases. The extensive use of big data for the diagnosis and treatment of urological disorders is still in its early stage and under validation. In future however, big data will no doubt play a major role in the management of urological conditions.


Omega ◽  
2021 ◽  
pp. 102479
Author(s):  
Zhongbao Zhou ◽  
Meng Gao ◽  
Helu Xiao ◽  
Rui Wang ◽  
Wenbin Liu

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1432
Author(s):  
Xwégnon Ghislain Agoua ◽  
Robin Girard ◽  
Georges Kariniotakis

The efficient integration of photovoltaic (PV) production in energy systems is conditioned by the capacity to anticipate its variability, that is, the capacity to provide accurate forecasts. From the classical forecasting methods in the state of the art dealing with a single power plant, the focus has moved in recent years to spatio-temporal approaches, where geographically dispersed data are used as input to improve forecasts of a site for the horizons up to 6 h ahead. These spatio-temporal approaches provide different performances according to the data sources available but the question of the impact of each source on the actual forecasting performance is still not evaluated. In this paper, we propose a flexible spatio-temporal model to generate PV production forecasts for horizons up to 6 h ahead and we use this model to evaluate the effect of different spatial and temporal data sources on the accuracy of the forecasts. The sources considered are measurements from neighboring PV plants, local meteorological stations, Numerical Weather Predictions, and satellite images. The evaluation of the performance is carried out using a real-world test case featuring a high number of 136 PV plants. The forecasting error has been evaluated for each data source using the Mean Absolute Error and Root Mean Square Error. The results show that neighboring PV plants help to achieve around 10% reduction in forecasting error for the first three hours, followed by satellite images which help to gain an additional 3% all over the horizons up to 6 h ahead. The NWP data show no improvement for horizons up to 6 h but is essential for greater horizons.


Author(s):  
Pijush Kanti Dutta Pramanik ◽  
Saurabh Pal ◽  
Moutan Mukhopadhyay

Like other fields, the healthcare sector has also been greatly impacted by big data. A huge volume of healthcare data and other related data are being continually generated from diverse sources. Tapping and analysing these data, suitably, would open up new avenues and opportunities for healthcare services. In view of that, this paper aims to present a systematic overview of big data and big data analytics, applicable to modern-day healthcare. Acknowledging the massive upsurge in healthcare data generation, various ‘V's, specific to healthcare big data, are identified. Different types of data analytics, applicable to healthcare, are discussed. Along with presenting the technological backbone of healthcare big data and analytics, the advantages and challenges of healthcare big data are meticulously explained. A brief report on the present and future market of healthcare big data and analytics is also presented. Besides, several applications and use cases are discussed with sufficient details.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 124-125
Author(s):  
Guilherme J Rosa ◽  
Vera C Aiken ◽  
Arthur Fernandes ◽  
Joao R Dorea

Abstract In this presentation we will discuss our current research on computer vision techniques for optimized management of feed bunks and prediction of live weight in beef cattle. The combination of these two techniques allows not only an enhanced nutritional management in feedlots, but also the determination of economically optimal harvest time for maximized returns. In addition, we will discuss computational and data analytics strategies for integration and analysis of large datasets from multiple sources, including operational farm data, weather and economics, for aiding data-driven decisions to improve beef cattle production.


Sign in / Sign up

Export Citation Format

Share Document