Web-Based Text Analysis of the Patient Safety Concerns of Various Healthcare Stakeholders

2021 ◽  
Author(s):  
Insook Cho ◽  
Minyoung Lee ◽  
Yeonjin Kim

Patient safety is a fundamental aspect of the quality of healthcare and there is a growing interest in improving safety among healthcare stakeholders in many countries. The Korean government recognized that patient safety is a threat to society following several serious adverse events, and so the Ministry of Health and Welfare of the Korean government set up the Patient Safety Act in January 2015. This study analyzed text data on patient safety collected from web-based, user-generated documents related to the legislation to see if they accurately represent the specific concerns of various healthcare stakeholders. We adopted the unsupervised natural language processing method of probabilistic topic modeling and also Latent Dirichlet Allocation. The results showed that text data are useful for inferring the latent concerns of healthcare consumers, providers, government bodies, and researchers as well as changes therein over time.

2021 ◽  
Author(s):  
Anahita Davoudi ◽  
Natalie Lee ◽  
Thaibinh Luong ◽  
Timothy Delaney ◽  
Elizabeth Asch ◽  
...  

Background: Free-text communication between patients and providers is playing an increasing role in chronic disease management, through platforms varying from traditional healthcare portals to more novel mobile messaging applications. These text data are rich resources for clinical and research purposes, but their sheer volume render them difficult to manage. Even automated approaches such as natural language processing require labor-intensive manual classification for developing training datasets, which is a rate-limiting step. Automated approaches to organizing free-text data are necessary to facilitate the use of free-text communication for clinical care and research. Objective: We applied unsupervised learning approaches to 1) understand the types of topics discussed and 2) to learn medication-related intents from messages sent between patients and providers through a bi-directional text messaging system for managing participant blood pressure. Methods: This study was a secondary analysis of de-identified messages from a remote mobile text-based employee hypertension management program at an academic institution. In experiment 1, we trained a Latent Dirichlet Allocation (LDA) model for each message type (inbound-patient and outbound-provider) and identified the distribution of major topics and significant topics (probability >0.20) across message types. In experiment 2, we annotated all medication-related messages with a single medication intent. Then, we trained a second LDA model (medLDA) to assess how well the unsupervised method could identify more fine-grained medication intents. We encoded each medication message with n-grams (n-1-3 words) using spaCy, clinical named entities using STANZA, and medication categories using MedEx, and then applied Chi-square feature selection to learn the most informative features associated with each medication intent. Results: A total of 253 participants and 5 providers engaged in the program generating 12,131 total messages: 47% patient messages and 53% provider messages. Most patient messages correspond to blood pressure (BP) reporting, BP encouragement, and appointment scheduling. In contrast, most provider messages correspond to BP reporting, medication adherence, and confirmatory statements. In experiment 1, for both patient and provider messages, most messages contained 1 topic and few with more than 3 topics identified using LDA. However, manual review of some messages within topics revealed significant heterogeneity even within single-topic messages as identified by LDA. In experiment 2, among the 534 medication messages annotated with a single medication intent, most of the 282 patient medication messages referred to medication request (48%; n=134) and medication taking (28%; n=79); most of the 252 provider medication messages referred to medication question (69%; n=173). Although medLDA could identify a majority intent within each topic, the model could not distinguish medication intents with low prevalence within either patient or provider messages. Richer feature engineering identified informative lexical-semantic patterns associated with each medication intent class. Conclusion: LDA can be an effective method for generating subgroups of messages with similar term usage and facilitate the review of topics to inform annotations. However, few training cases and shared vocabulary between intents precludes the use of LDA for fully automated deep medication intent classification.


Author(s):  
Subhadra Dutta ◽  
Eric M. O’Rourke

Natural language processing (NLP) is the field of decoding human written language. This chapter responds to the growing interest in using machine learning–based NLP approaches for analyzing open-ended employee survey responses. These techniques address scalability and the ability to provide real-time insights to make qualitative data collection equally or more desirable in organizations. The chapter walks through the evolution of text analytics in industrial–organizational psychology and discusses relevant supervised and unsupervised machine learning NLP methods for survey text data, such as latent Dirichlet allocation, latent semantic analysis, sentiment analysis, word relatedness methods, and so on. The chapter also lays out preprocessing techniques and the trade-offs of growing NLP capabilities internally versus externally, points the readers to available resources, and ends with discussing implications and future directions of these approaches.


2021 ◽  
Vol 28 (1) ◽  
pp. e100274
Author(s):  
Paul Fairie ◽  
Zilong Zhang ◽  
Adam G D'Souza ◽  
Tara Walsh ◽  
Hude Quan ◽  
...  

ObjectivesPatient feedback is critical to identify and resolve patient safety and experience issues in healthcare systems. However, large volumes of unstructured text data can pose problems for manual (human) analysis. This study reports the results of using a semiautomated, computational topic-modelling approach to analyse a corpus of patient feedback.MethodsPatient concerns were received by Alberta Health Services between 2011 and 2018 (n=76 163), regarding 806 care facilities in 163 municipalities, including hospitals, clinics, community care centres and retirement homes, in a province of 4.4 million. Their existing framework requires manual labelling of pre-defined categories. We applied an automated latent Dirichlet allocation (LDA)-based topic modelling algorithm to identify the topics present in these concerns, and thereby produce a framework-free categorisation.ResultsThe LDA model produced 40 topics which, following manual interpretation by researchers, were reduced to 28 coherent topics. The most frequent topics identified were communication issues causing delays (frequency: 10.58%), community care for elderly patients (8.82%), interactions with nurses (8.80%) and emergency department care (7.52%). Many patient concerns were categorised into multiple topics. Some were more specific versions of categories from the existing framework (eg, communication issues causing delays), while others were novel (eg, smoking in inappropriate settings).DiscussionLDA-generated topics were more nuanced than the manually labelled categories. For example, LDA found that concerns with community care were related to concerns about nursing for seniors, providing opportunities for insight and action.ConclusionOur findings outline the range of concerns patients share in a large health system and demonstrate the usefulness of using LDA to identify categories of patient concerns.


2021 ◽  
Author(s):  
Mieke Sarah Slim ◽  
Robert Hartsuiker

The visual world paradigm is one of the most influential paradigms to study real-time language processing. The present study tested whether visual world studies can be moved online, using PCIbex software (Zehr & Schwarz, 2018) and the WebGazer.js algorithm (Papoutsaki et al., 2016) to collect eye-movement data. Experiment 1 was a fixation task in which the participants looked at a fixation cross in multiple positions on the computer screen. Experiment 2 was a web-based replication of a visual world experiment by Dijkgraaf, Hartsuiker and Duyck (2017). Firstly, both experiments revealed that the spatial accuracy of the data allowed us to distinguish looks across the four quadrants of the computer screen. This suggest that the spatial resolution of WebGazer.js is fine-grained enough for most visual world experiments (which typically involve a four-by-four quadrant-based set-up of the visual display). Secondly, both experiments revealed a delay of roughly 300 ms in the time course of the eye movements, most likely caused by the internal processing speed of the browser or WebGazer.js. This delay can be problematic in studying questions that require a fine-grained temporal resolution and requires further investigation.


2018 ◽  
Vol 23 (3) ◽  
pp. 175-191
Author(s):  
Anneke Annassia Putri Siswadi ◽  
Avinanta Tarigan

To fulfill the prospective student's information need about student admission, Gunadarma University has already many kinds of services which are time limited, such as website, book, registration place, Media Information Center, and Question Answering’s website (UG-Pedia). It needs a service that can serve them anytime and anywhere. Therefore, this research is developing the UGLeo as a web based QA intelligence chatbot application for Gunadarma University's student admission portal. UGLeo is developed by MegaHal style which implements the Markov Chain method. In this research, there are some modifications in MegaHal style, those modifications are the structure of natural language processing and the structure of database. The accuracy of UGLeo reply is 65%. However, to increase the accuracy there are some improvements to be applied in UGLeo system, both improvement in natural language processing and improvement in MegaHal style.


Author(s):  
Radha Guha

Background:: In the era of information overload it is very difficult for a human reader to make sense of the vast information available in the internet quickly. Even for a specific domain like college or university website it may be difficult for a user to browse through all the links to get the relevant answers quickly. Objective:: In this scenario, design of a chat-bot which can answer questions related to college information and compare between colleges will be very useful and novel. Methods:: In this paper a novel conversational interface chat-bot application with information retrieval and text summariza-tion skill is designed and implemented. Firstly this chat-bot has a simple dialog skill when it can understand the user query intent, it responds from the stored collection of answers. Secondly for unknown queries, this chat-bot can search the internet and then perform text summarization using advanced techniques of natural language processing (NLP) and text mining (TM). Results:: The advancement of NLP capability of information retrieval and text summarization using machine learning tech-niques of Latent Semantic Analysis(LSI), Latent Dirichlet Allocation (LDA), Word2Vec, Global Vector (GloVe) and Tex-tRank are reviewed and compared in this paper first before implementing them for the chat-bot design. This chat-bot im-proves user experience tremendously by getting answers to specific queries concisely which takes less time than to read the entire document. Students, parents and faculty can get the answers for variety of information like admission criteria, fees, course offerings, notice board, attendance, grades, placements, faculty profile, research papers and patents etc. more effi-ciently. Conclusion:: The purpose of this paper was to follow the advancement in NLP technologies and implement them in a novel application.


2021 ◽  
Vol 45 (10) ◽  
Author(s):  
Inés Robles Mendo ◽  
Gonçalo Marques ◽  
Isabel de la Torre Díez ◽  
Miguel López-Coronado ◽  
Francisco Martín-Rodríguez

AbstractDespite the increasing demand for artificial intelligence research in medicine, the functionalities of his methods in health emergency remain unclear. Therefore, the authors have conducted this systematic review and a global overview study which aims to identify, analyse, and evaluate the research available on different platforms, and its implementations in healthcare emergencies. The methodology applied for the identification and selection of the scientific studies and the different applications consist of two methods. On the one hand, the PRISMA methodology was carried out in Google Scholar, IEEE Xplore, PubMed ScienceDirect, and Scopus. On the other hand, a review of commercial applications found in the best-known commercial platforms (Android and iOS). A total of 20 studies were included in this review. Most of the included studies were of clinical decisions (n = 4, 20%) or medical services or emergency services (n = 4, 20%). Only 2 were focused on m-health (n = 2, 10%). On the other hand, 12 apps were chosen for full testing on different devices. These apps dealt with pre-hospital medical care (n = 3, 25%) or clinical decision support (n = 3, 25%). In total, half of these apps are based on machine learning based on natural language processing. Machine learning is increasingly applicable to healthcare and offers solutions to improve the efficiency and quality of healthcare. With the emergence of mobile health devices and applications that can use data and assess a patient's real-time health, machine learning is a growing trend in the healthcare industry.


Author(s):  
Magnus Nord ◽  
Magnus Ysander ◽  
Tim Sullivan ◽  
Mayur Patel

OBJECTIVE: In 2012, Patient Safety (PS) in AstraZeneca was facing a situation with multiple challenges, scientifically and structurally. To meet these and support AstraZeneca’s ambition to return to growth after years of patent expiry, we undertook a project to fundamentally revisit ways of working to create an organisation set up to provide strategic safety in support of drug project decision-making. METHOD: In this paper, we describe the challenges we faced, the project to deliver changes to respond to them, and the methodology used. The project had two main components: creating a new operating model and simplifying the procedural framework. RESULTS: It was delivered in a focused effort by internal PS resources with cross-functional input. The framework simplification resulted in a 71% reduction in procedural documents and a survey of PS staff revealed an increase in satisfaction of 10%–20% across all scores. CONCLUSIONS: With >3 years of observation time, this project has provided AstraZeneca with a PS organisation able to provide strategic safety, supporting successful portfolio delivery, while ensuring patient safety and maintaining compliance with global pharmacovigilance regulations. It has driven efficiency and set the foundation for continued organisational evolution to meet future business needs in an everchanging environment.


2018 ◽  
Vol 28 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Daniel R Murphy ◽  
Ashley ND Meyer ◽  
Dean F Sittig ◽  
Derek W Meeks ◽  
Eric J Thomas ◽  
...  

Progress in reducing diagnostic errors remains slow partly due to poorly defined methods to identify errors, high-risk situations, and adverse events. Electronic trigger (e-trigger) tools, which mine vast amounts of patient data to identify signals indicative of a likely error or adverse event, offer a promising method to efficiently identify errors. The increasing amounts of longitudinal electronic data and maturing data warehousing techniques and infrastructure offer an unprecedented opportunity to implement new types of e-trigger tools that use algorithms to identify risks and events related to the diagnostic process. We present a knowledge discovery framework, the Safer Dx Trigger Tools Framework, that enables health systems to develop and implement e-trigger tools to identify and measure diagnostic errors using comprehensive electronic health record (EHR) data. Safer Dx e-trigger tools detect potential diagnostic events, allowing health systems to monitor event rates, study contributory factors and identify targets for improving diagnostic safety. In addition to promoting organisational learning, some e-triggers can monitor data prospectively and help identify patients at high-risk for a future adverse event, enabling clinicians, patients or safety personnel to take preventive actions proactively. Successful application of electronic algorithms requires health systems to invest in clinical informaticists, information technology professionals, patient safety professionals and clinicians, all of who work closely together to overcome development and implementation challenges. We outline key future research, including advances in natural language processing and machine learning, needed to improve effectiveness of e-triggers. Integrating diagnostic safety e-triggers in institutional patient safety strategies can accelerate progress in reducing preventable harm from diagnostic errors.


2021 ◽  
pp. 016555152110077
Author(s):  
Sulong Zhou ◽  
Pengyu Kan ◽  
Qunying Huang ◽  
Janet Silbernagel

Natural disasters cause significant damage, casualties and economical losses. Twitter has been used to support prompt disaster response and management because people tend to communicate and spread information on public social media platforms during disaster events. To retrieve real-time situational awareness (SA) information from tweets, the most effective way to mine text is using natural language processing (NLP). Among the advanced NLP models, the supervised approach can classify tweets into different categories to gain insight and leverage useful SA information from social media data. However, high-performing supervised models require domain knowledge to specify categories and involve costly labelling tasks. This research proposes a guided latent Dirichlet allocation (LDA) workflow to investigate temporal latent topics from tweets during a recent disaster event, the 2020 Hurricane Laura. With integration of prior knowledge, a coherence model, LDA topics visualisation and validation from official reports, our guided approach reveals that most tweets contain several latent topics during the 10-day period of Hurricane Laura. This result indicates that state-of-the-art supervised models have not fully utilised tweet information because they only assign each tweet a single label. In contrast, our model can not only identify emerging topics during different disaster events but also provides multilabel references to the classification schema. In addition, our results can help to quickly identify and extract SA information to responders, stakeholders and the general public so that they can adopt timely responsive strategies and wisely allocate resource during Hurricane events.


Sign in / Sign up

Export Citation Format

Share Document