scholarly journals Main conditions of rational technological solutions of injection processes for ladle desulphurization of hot metal by various dispersed reagents

Author(s):  
A. F. Shevchenko ◽  
I. A. Manachin

 Application of dispersed reagents in hot metal ladle treatment processes enabled for solving a wide range of tasks of increasing metal products quality and improving technical and economic indices of metal smelting processes. But there are reserves of existing technologies improving, since during their application a whole number of peculiarities of heat- and mass exchange processes, having place in ladle at wide range of parameters and refining conditions, are not taken into consideration. Therefore, elaboration of conceptions about exchange processes mechanisms at different reagents injection input and elaboration of most rational technological solutions are rather actual.Influence of chemical and fraction-dispersed content of reagents on hot metal desulphurization processes studied. First priority of CaO and Mg application justified.It was shown, that when using fine powders, particles less 0.08 mm practically do not penetrate into hot metal melt, and when grain reagents (0.2–1.6 mm) are used, their particles can penetrate into hot metal by a depth of 25 mm.It was established that during the injection desulphurization there are conditions and separation of blow-in two-phase stream takes place in near-tuyere zone with division for gas and solid components.During the desulphurization by powder non-magnesium reagents (lime), the powder concentration 40–60 kg/Nm3 in gas justified, usage of reducing agents not from hot metal components (С, Si, Mn), but Al introduced from outside. Besides, it was recommended to introduce evaporating and gas-forming (in the melt) additions into gas and solid phase for additional phase dispersion in the neartuyere zone.During the magnesium mono-injection its application in the form of grains (0.2–1.6 mm) justified and blow-in velocity >80 m/s.The obtained scientific preconditions of hot metal desulphurization efficiency increase by different reagents were checked in industrial conditions. 

Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


2000 ◽  
Vol 35 (2) ◽  
pp. 245-262 ◽  
Author(s):  
Francis I. Onuska ◽  
Ken A. Terry ◽  
R. James Maguire

Abstract The analysis of aromatic amines, particularly benzidines, at trace levels in environmental media has been difficult because of the lack of suitable deactivated capillary column stationary phases for gas chromatography. This report describes the use of an improved type of column as well as a method for the analysis of anilines and benzidines in water, wastewater and sewage samples. Extraction procedures are applicable to a wide range of compounds that are effectively partitioned from an aqueous matrix into methylene chloride, or onto a solid-phase extraction cartridge. The extracted analytes are also amenable to separation on a capillary gas chromatographic column and transferable to the mass spectrometer. These contaminants are converted to their N-trifluoroacetyl derivatives. Aniline and some substituted anilines, and 3,3’-dichlorobenzidine and benzidine were determined in 24-h composite industrial water, wastewater, primary sludge and final effluent samples at concentrations from 0.03 up to 2760 µg/L.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


2019 ◽  
Vol 23 (6) ◽  
pp. 643-678
Author(s):  
Lalthazuala Rokhum ◽  
Ghanashyam Bez

Recent years have witnessed a fast development of solid phase synthetic pathways, a variety of solid-supported reagent and its applications in diverse synthetic strategies and pharmaceutical applicability’s. Polymer-supported triphenylphosphine is getting a lot of applications owing to the speed and simplicity in the process. Furthermore, ease of recyclability and reuse of polymer-supported triphenylphosphine added its advantages. This review covers a wide range of useful organic transformations which are accomplished using cross-linked polystyrene-supported triphenylphosphine with the aim of giving renewed interest in the field of organic and medicinal-combinatorial chemistry.


Author(s):  
Hernâni Marques ◽  
Pedro Cruz-Vicente ◽  
Tiago Rosado ◽  
Mário Barroso ◽  
Luís A. Passarinha ◽  
...  

Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid–liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.


2021 ◽  
Vol 11 (12) ◽  
pp. 5705
Author(s):  
Adrian Stuparu ◽  
Romeo Susan-Resiga ◽  
Alin Bosioc

The present study examines the possibility of using an industrial stirred chemical reactor, originally employed for liquid–liquid mixtures, for operating with two-phase liquid–solid suspensions. It is critical when obtaining a high-quality chemical product that the solid phase remains suspended in the liquid phase long enough that the chemical reaction takes place. The impeller was designed for the preparation of a chemical product with a prescribed composition. The present study aims at finding, using a numerical simulation analysis, if the performance of the original impeller is suitable for obtaining a new chemical product with a different composition. The Eulerian multiphase model was employed along with the renormalization (RNG) k-ε turbulence model to simulate liquid–solid flow with a free surface in a stirred tank. A sliding-mesh approach was used to model the impeller rotation with the commercial CFD code, FLUENT. The results obtained underline that 25% to 40% of the solid phase is sedimented on the lower part of the reactor, depending on the initial conditions. It results that the impeller does not perform as needed; hence, the suspension time of the solid phase is not long enough for the chemical reaction to be properly completed.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


Sign in / Sign up

Export Citation Format

Share Document