Development of Ejector Performance Map for Predicting Fixed-geometry Two-phase Ejector Performance for Wide Range of Operating Conditions

Author(s):  
Muhammad Haider ◽  
Stefan Elbel
Author(s):  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Raffaele L. Amalfi ◽  
Filippo Cataldo

Abstract Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 16 ◽  
Author(s):  
Zine Aidoun ◽  
Khaled Ameur ◽  
Mehdi Falsafioon ◽  
Messaoud Badache

Two-phase ejectors play a major role as refrigerant expansion devices in vapor compression systems and can find potential applications in many other industrial processes. As a result, they have become a focus of attention for the last few decades from the scientific community, not only for the expansion work recovery in a wide range of refrigeration and heat pump cycles but also in industrial processes as entrainment and mixing enhancement agents. This review provides relevant findings and trends, characterizing the design, operation and performance of the two-phase ejector as a component. Effects of geometry, operating conditions and the main developments in terms of theoretical and experimental approaches, rating methods and applications are discussed in detail. Ejector expansion refrigeration cycles (EERC) as well as the related theoretical and experimental research are reported. New and other relevant cycle combinations proposed in the recent literature are organized under theoretical and experimental headings by refrigerant types and/or by chronology whenever appropriate and systematically commented. This review brings out the fact that theoretical ejector and cycle studies outnumber experimental investigations and data generation. More emerging numerical studies of two-phase ejectors are a positive step, which has to be further supported by more validation work.


2021 ◽  
Vol 895 (1) ◽  
pp. 012002
Author(s):  
V S Alekseev ◽  
R S Seryi

Abstract Currently sluice washing devices are the most common in alluvial gold mining. Their use provides a sufficiently high performance, relatively low power consumption, and acceptable recovery of valuable components. The theoretical provisions of traditional hydraulics make it possible to determine all the main parameters of the movement of particles of rocks and gold in the pulp, however, in real operating conditions of the sluice box, their actual values will differ greatly from the calculated ones, especially if there are solid fractions in the pulp with a particle size of more than 20 mm. This is explained by significant fluctuations in the values of the surface, average and bottom velocities of the two-phase flow, vertical pulsation velocity in conditions of constrained movement of the different fractional composition of rocks. The article presents the results of experimental studies to identify the dependence of the distance traveled by an individual gold particle and host rocks in a two-phase flow through a sluice, the bottom of which is lined with trapping coatings, on the design and technological parameters of the flushing device. The mathematical model for determining this distance formed the basis of the Gold Enriching program. The program allows, in a wide range of initial data, to determine the zones of concentration of gold of a certain size at the sluice boxes.


2021 ◽  
Author(s):  
John Kim ◽  
Raffaele L. Amalfi

Abstract Two-phase cooling systems based on the thermosyphon operating principle exhibit excellent heat transfer performance, reliability, and flexibility, therefore can be applied to overcome thermal challenges in a wide range of electronic cooling applications and deployment scenarios. However, extremely complex nature of two-phase flow physics involving flow patterns and phase transitions has been the major challenge for technology adoption in industry. This paper demonstrates a machine learning (ML) based model for evaluating the thermal performance and refrigerant mass flow rate, of a thermosyphon cooling system for telecom equipment. Unlike conventional laboratory approach that requires numerous sensors attached to a cooling system to capture their thermal performance, the new model requires a minimum number of sensors to monitor the health of a thermal management solution. Using the proposed model, a system control module can be further developed which could identify optimal operating parameters in real-time under dynamically changing heat load conditions and actively maintain safety and thermal requirements.


1981 ◽  
Vol 103 (1) ◽  
pp. 81-85 ◽  
Author(s):  
B. T. Beck ◽  
G. L. Wedekind

The system mean void fraction model has been successful in the prediction of a variety of transient evaporating and condensing flow phenomena; however, applications of the model have been restricted to physical situations involving complete vaporization or condensation. The major contribution of this paper is the development of a generalization of the existing system mean void fraction model, applicable to the broader class of transient two-phase flow problems involving incomplete vaporization. Present applications of the generalized system mean void fraction model to transient evaporating flows indicate good agreement with experimental void fraction and mass flux response data available in the literature. These data represent a variety of different flow geometries, types of fluids, and a wide range of operating conditions.


Author(s):  
Adriana Greco ◽  
Rita Mastrullo ◽  
Alfonso W. Mauro ◽  
Giuseppe P. Vanoli

A 962 points database for refrigerants two-phase flows by Greco A. and Vanoli G.P. was statistically compared to four widely used prediction methods by Lockhart and Martinelli, Chawla, Theissing and Mu¨ller-Steinhagen and Heck in order to determine the best one. The experimental points are in a wide range of operating conditions for six pure or mixed refrigerants (R134a, R22, R407C, R507A, R410A and R404A) during evaporation in a smooth horizontal tube of 6 m length and 6 mm ID.


1976 ◽  
Vol 98 (2) ◽  
pp. 180-189 ◽  
Author(s):  
T. S. Cook ◽  
C. A. Rau ◽  
E. Smith

Many high strength alloys that are developed for arduous operating conditions have essentially a two-phase microstructure that is produced by a precipitation-hardening procedure. However, alloys that are heat-treated to have maximum hardness, often have poor monotonic and poor fatigue fracture characteristics when these are assessed in relation to their high yield strengths, and this imposes limits to their use for service applications. Experimental investigations covering a wide range of precipitation-hardened alloys have shown that the inferior fracture properties are due to plastic deformation being concentrated within narrow zones. Against this background, Pratt & Whitney Aircraft is undertaking a comprehensive theoretical investigation based on the representation of flow concentration by appropriate theoretical models. The general objective is to provide a quantitative understanding of flow concentration, both with respect to its causes and consequences, in terms of both material and externally imposed parameters such as, for example, the state of loading. The aim of the present paper is not to survey the complete problem of flow concentration in the light of the research undertaken to date, but to provide a limited number of examples that illustrate how specific aspects of the problem have been considered using appropriate models to describe the operative physical processes. With the Conference’s objectives in mind, the paper’s general intention is therefore to provide further evidence that micromechanical modeling can be successfully used to relate mechanical behavior with metallurgical parameters, and thereby add further support for the view that such work forms an integral part of any balanced materials research and development program.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Mostafa Safdari Shadloo ◽  
Amin Rahmat ◽  
Arash Karimipour ◽  
Somchai Wongwises

Abstract Gas–liquid two-phase flows through long pipelines are one of the most common cases found in chemical, oil, and gas industries. In contrast to the gas/Newtonian liquid systems, the pressure drop has rarely been investigated for two-phase gas/non-Newtonian liquid systems in pipe flows. In this regard, an artificial neural networks (ANNs) model is presented by employing a large number of experimental data to predict the pressure drop for a wide range of operating conditions, pipe diameters, and fluid characteristics. Utilizing a multiple-layer perceptron neural network (MLPNN) model, the predicted pressure drop is in a good agreement with the experimental results. In most cases, the deviation of the predicted pressure drop from the experimental data does not exceed 5%. It is observed that the MLPNN provides more accurate results for horizontal pipelines in comparison with other empirical correlations that are commonly used in industrial applications.


Author(s):  
Rajgopal Vijaykumar ◽  
Julie M. Jarvis ◽  
Allen T. Vieira ◽  
James Humphrey ◽  
Dong Zheng

Coal-fired supercritical power plants have steam generator liquid/vapor separator systems used during transition to/from “drum” mode and “once-through” mode, which undergo flow transients, involving control systems and valve openings, during startup and shutdown. These transients result in fluid acceleration which can produce significant reaction loads on piping systems (20 kips or higher). The evaluation of these loads is used to design piping supports and to assess possible control system and valving modifications. The computation of these transient loadings is challenging because the conditions in steam generator separator systems range from supercritical to subcritical, two phase, cold water or steam conditions occurring over a wide range of pressures and valve operating characteristics. A transient analysis of a typical separator-condensate line is performed using computer codes RELAP5/MOD3.2 and R5FORCE for the hydrodynamic forcetime history. A range of hydraulic loads associated with a range of operating conditions is provided in this paper using different boundary conditions for separator tank pressure, initial temperature of water in pipe lines, and control valve opening/closing times. These sensitivity runs show the benefit of plant control system changes to prevent the control valves opening above 1400 psia, increasing the control valve opening time to over one second, and the effects of keeping the separator-condensate line hot.


Author(s):  
Abdalsalam Ihmoudah ◽  
Mohamed M. Awad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt

Abstract Two-phase flow of gas/yield power-law (YPL) fluids in pipes can be found in a wide range of practical and industrial applications. To improve the understanding of the effects of rheological parameters of non-Newtonian liquids in a two-phase model, experimental and Computational Fluid Dynamics (CFD) investigations of gas/yield power-law fluids in a horizontal pipe were carried out. Two Xanthan gum (XG) solutions at concentrations of (0.05% and 0.10% by weight) were used as the working liquids. The experiments were conducted in a flow loop in a 65-m open-cycle system. The horizontal test section had a diameter of 3 inches (76.2 mm). The transient calculations were conducted using a Volume of Fluid (VOF) model in ANSYS Fluent version 17.2. Slug flow characteristics were recorded and observed by a high-speed digital camera in different operating conditions. The slug velocity and slug frequency were investigated experimentally and numerically, and a comparison of results with empirical relationships found in the literature was performed. We observed that the rheological properties of non-Newtonian phase influence the flow behavior in two-phase flow with increasing XG concentrations. The results of the empirical correlation to measure the slug frequency of a gas/non-Newtonian with considered the rheology of the shear-thinning behaver gave acceptable agreement with numerical measurements at low polymer concentration. The effect of liquid superficial velocity on slug translational velocity at low gas superficial velocity was relatively high.


Sign in / Sign up

Export Citation Format

Share Document