Estimation of precise orbits and clock corrections of GLONASS and GPS navigation satellites in ultra-rapid regime based on observation data

2020 ◽  
pp. 11-17
Author(s):  
I.V. Bezmenov

The article presents the results on development of an algorithm and a program for calculation in ultra-rapid regime of ephemeris-time information for GLONASS and GPS navigation satellites, achieved by now in the Main metrological center of the state service of time and frequency and determination of earth rotation parameters of VNIIFTRI. Calculation of ephemeris-time information is carried out by data of code and phase measurements at two carrier frequencies. The measurement data are presented in the form of hourly RINEX observation files and navigation message files from tracking stations involved in the IGS (International GNSS Service) network. Results of test calculations of ephemeris and clock corrections of GLONASS and GPS navigation satellites are presented. The analysis of the accuracy of the obtained results compared to the aposteriori data of other analysis centers is given.

2021 ◽  
Vol 95 (7) ◽  
Author(s):  
S. Schaer ◽  
A. Villiger ◽  
D. Arnold ◽  
R. Dach ◽  
L. Prange ◽  
...  

AbstractThe generation and use of GNSS analysis products that allow—particularly for the needs of single-receiver applications—precise point positioning with ambiguity resolution (PPP-AR) are becoming more and more popular. A general uncertainty concerns the question on how the necessary phase bias information should be provided to the PPP-AR user. Until now, each AR-enabling clock/bias representation method had its own practice to provide the necessary bias information. We have generalized the observable-specific signal bias (OSB) representation, as introduced in Villiger (J Geod 93:1487–1500, 2019) originally exclusively for pseudorange measurements, to carrier phase measurements. The existing common clock (CC) approach has been extended in a way that OSBs allowing for flexible signal and frequency handling between multiple GNSS become possible. Advantages of the proposed OSB-based PPP-AR approach are: GNSS biases can be provided in a consistent way for phase and code measurements and it is capable of multi-GNSS and suitable for standardization. This new, extended PPP-AR approach has been implemented by the Center for Orbit Determination in Europe (CODE). CODE clock products that adhere to the integer-cycle property have been submitted to the International GNSS Service (IGS) since mid of 2018 for three analysis lines: Rapid, Final, and MGEX (Multi-GNSS Extension). Ambiguity fixing is performed not only for GPS but also for Galileo. The integer-cycle property of between-satellite clock differences is of fundamental importance when comparing satellite clock estimates among various analysis lines, or at day boundaries. Both kinds of comparisons could be exploited at a very high level of consistency. Any retrieved comparison essentially indicated a standard deviation for between-satellite clocks from CODE of the order of 5 ps (1.5 mm in range). Finally, the integer-cycle property that may be recovered between the CODE Final clock and the accompanying bias product of consecutive daily sessions (using clock estimates additionally provided for the second midnight epoch) allows us to deduce GPS satellite clock and phase bias information that is consistent and continuous with respect to carrier phase observation data over two, three, or, in principle, yet more days. Phase-based clock densification from initially estimated integer-cycle-conform clock corrections at intervals of 300 s to 30 s (5 s in case of our Final clock product) is a matter of particular interest. Based on direct product comparisons and GRACE K-band ranging (KBR) data analysis, the quality of accordingly densified clock corrections could be confirmed to be on a level similar to that of “anchor” (300 s) clock corrections.


2020 ◽  
Vol 23 (6) ◽  
pp. 1647-1662
Author(s):  
Ravshan Ashurov ◽  
Sabir Umarov

Abstract The identification of the right order of the equation in applied fractional modeling plays an important role. In this paper we consider an inverse problem for determining the order of time fractional derivative in a subdiffusion equation with an arbitrary second order elliptic differential operator. We prove that the additional information about the solution at a fixed time instant at a monitoring location, as “the observation data”, identifies uniquely the order of the fractional derivative.


1982 ◽  
Vol 19 (01) ◽  
pp. 52-72
Author(s):  
William A. Henrickson ◽  
John S. Spencer

The need exists for a simplified structural review guide to enable U.S. Coast Guard marine inspectors to verify the structural adequacy of aluminum crewboats. The authors have developed such a guide. Typical existing crewboat forms and service speeds have been used to reduce the determination of impact pressures to a function of length and displacement. A design stress limit for the cyclic loading of the bottom structure has been determined based on wave observation data. Plating design has been verified by a comparison of sizing by beam theory versus elastoplastic analysis. A simplified grillage analysis has been used to determine the level of support provided by longitudinal plate girders or keelsons. A worked example and tables of section moduli for typical extrusions attached to plating are included as appendices.


Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 24
Author(s):  
Satyanto Krido Saptomo

<em>Artificial neural network (ANN) approach was used to model energy dissipation process into sensible heat and latent heat (evapotranspiration) fluxes. The ANN model has 5 inputs which are leaf temperature T<sub>l</sub>, air temperature T<sub>a</sub>, net radiation R<sub>n</sub>, wind speed u<sub>c</sub> and actual vapor pressure e<sub>a</sub>. Adjustment of ANN was conducted using back propagation technique, employing measurement data of input and output parameters of the ANN. The estimation results using the adjusted ANN shows its capability in resembling the heat dissipation process by giving outputs of sensible and latent heat fluxes closed to its respective measurement values as the measured input values are given.  The ANN structure presented in this paper suits for modeling similar process over vegetated surfaces, but the adjusted parameters are unique. Therefore observation data set for each different vegetation and adjustment of ANN are required.</em>


Author(s):  
W. H. ElMaraghy ◽  
Z. Wu ◽  
H. A. ElMaraghy

Abstract This paper focuses on the development of a procedure and algorithms for the systematic comparison of geometric variations of measured features with their specified geometric tolerances. To automate the inspection of mechanical parts, it is necessary to analyze the measurement data captured by coordinate measuring machines (CMM) in order to detect out-of-tolerance conditions. A procedure for determining the geometric tolerances from the measured three dimensional coordinates on the surface of a cylindrical feature is presented. This procedure follows the definitions of the geometric tolerances used in the current Standards, and is capable of determining the value of each geometric tolerance from the composite 3-D data. The developed algorithms adopt the minimum tolerance zone criterion. Nonlinear numerical optimization techniques are used to fit the data to the minimum tolerance zone. Two test cases are given in the paper which demonstrate the successful determination of geometric tolerances from given simulated data.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3376 ◽  
Author(s):  
Yuan Du ◽  
Guanwen Huang ◽  
Qin Zhang ◽  
Yang Gao ◽  
Yuting Gao

Real-time kinematic (RTK) positioning is a satellite navigation technique that is widely used to enhance the precision of position data obtained from global navigation satellite systems (GNSS). This technique can reduce or eliminate significant correlation errors via the enhancement of the base station observation data. However, observations received by the base station are often interrupted, delayed, and/or discontinuous, and in the absence of base station observation data the corresponding positioning accuracy of a rover declines rapidly. With the strategies proposed till date, the positioning accuracy can only be maintained at the centimeter-level for a short span of time, no more than three min. To address this, a novel asynchronous RTK method (that addresses asynchronous errors) that can bridge significant gaps in the observations at the base station is proposed. First, satellite clock and orbital errors are eliminated using the products of the final precise ephemeris during post-processing or the ultra-rapid precise ephemeris during real-time processing. Then the tropospheric error is corrected using the Saastamoinen model and the asynchronous ionospheric delay is corrected using the carrier phase measurements from the rover receiver. Finally, a straightforward first-degree polynomial function is used to predict the residual asynchronous error. Experimental results demonstrate that the proposed approach can achieve centimeter-level accuracy for as long as 15 min during interruptions in both real-time and post-processing scenarios, and that the accuracy of the real-time scheme can be maintained for 15 min even when a large systematic error is projected in the U direction.


Sign in / Sign up

Export Citation Format

Share Document