Investigation of the forms of moisture binding in the grain of triticale of the Gorka variety by the method of thermal analysis

2021 ◽  
Vol 30 (4) ◽  
pp. 44-47
Author(s):  
T. N. Tertychnaya ◽  
◽  
I.V. Kuznetsova ◽  
A.A. Shevtsov ◽  
S.S. Kulikov ◽  
...  

The work carried out experimental studies of Gorka triticale grain using differential scanning calorimetry (DSC) and thermogravimetry (TG) methods. To study the patterns of thermal impact on grain samples, a synchronous thermal analysis device (TG-DTA/DSC) of the STA 449 F3 Jupiter model was used. The importance of sample preparation for analysis with ground and whole grains was noted. The obtained relationships made it possible to distinguish periods of dehydration of water and conversion of dry substances during thermal exposure to triticale grain, as well as to identify temperature zones that correspond to the release of moisture with various forms and energy of communication.

2015 ◽  
Vol 1085 ◽  
pp. 441-446
Author(s):  
Olga Babkina ◽  
Elena Vaitulevich ◽  
Olga Gordeeva ◽  
Galima Sarycheva ◽  
Anna L. Nemoykina ◽  
...  

Using differential scanning calorimetry and synchronous thermal analysis under dynamic conditions, kinetic regularities of copolymerization of α- glycolide and a mixture of α-β-glycolidewith D,L-lactide in the presence of stannous octoate as a catalyst have been investigated. Some thermodynamic and kinetic parameters of cationic copolymerization of monomers have been determined.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Author(s):  
Kinga Tamási ◽  
Kálmán Marossy

AbstractThe paper deals with the study of seven selected natural plant oils. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermally stimulated discharge (TSD) methods were used. It has been found that most of the oils tested are in a glassy state at low temperature and have multiple transitions in the low temperature range. DSC shows complex melting-like processes or glass transition. For both DMA and TSD, the scaffold supportive method was used and found as a suitable one. DMA and TSD proved more sensitive than DSC and revealed at least two transitions between − 120 and − 40 °C. In the case of three oils (argan, avocado and sunflower), current reversal was observed by TSD; this symptom cannot be fully explained at the moment.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 270
Author(s):  
Evgeniy V. Belukhichev ◽  
Vera E. Sitnikova ◽  
Evgenia O. Samuylova ◽  
Mayya V. Uspenskaya ◽  
Daria M. Martynova

Polymeric packaging materials are one of the factors of environmental pollution. Reducing the environmental burden is possible by increasing the environmental friendliness of packaging materials. In this work, we study polymer films based on polyvinyl chloride (PVC) with a copolymer of 3-hydroxybutyrate with 3-hydroxyhexanoate P (3-GB) (3-GG) with different component ratios. The process of processing blends in the process of obtaining a packaging film is considered. The optical characteristics of the obtained films are determined. Thermal analysis of the obtained films was carried out using the differential scanning calorimetry (DSC), TGA, and thermomechanical analysis (TMA) methods. The degree of gelling of the resulting mixture was determined. It is shown that PHB has miscibility with PVC.


2012 ◽  
Vol 111 (3) ◽  
pp. 1707-1716 ◽  
Author(s):  
Salaam Saleh ◽  
Druthiman Reddy Mantheni ◽  
Manik Pavan Kumar Maheswaram ◽  
Susan Moreno-Molek ◽  
Tobili Sam-Yellowe ◽  
...  

Author(s):  
Daniel Larouche

Thermal analysis is applied on aluminum alloys by researchers to investigate mainly phase transformations, while it is regularly used for quality control purposes in industry. Techniques like cooling curve analysis, differential thermal analysis, differential scanning calorimetry, and isothermal calorimetry are amongst those most frequently used by scientists and engineers. These techniques will be described, and a mathematical description of the results will be developed. State-of-the-art quantification methods applied on aluminum alloys will be presented and criticized based on specific examples taken from the literature.


2006 ◽  
Vol 71 (8-9) ◽  
pp. 905-915
Author(s):  
Moura de ◽  
Jivaldo Matos ◽  
Farias de

The synthesis, characterization and thermal degradation of yttrium and lanthanum methanesulfonates is reported. The prepared salts were characterized by elemental analysis and infrared spectroscopy. The thermal degradation study was performed using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC).Using the thermogravimetric data, a kinetic study of the dehydration ofY and Lamethanesulfonates was performed employing the Coats-Redfern and Zsak?methods. It was verified that under heating, yttrium and lanthanum methanesulfonates undergo three main processes: dehydration, thermal degradation and oxide formation. Furthermore, depending on the nature of the atmosphere, i.e., inert or oxidant, the thermal degradation process could be endothermic (N2) or exothermic (air).


2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


Sign in / Sign up

Export Citation Format

Share Document