The effects of drought stress and western corn rootworm feeding on maize root biology

2010 ◽  
Author(s):  
◽  
Kristen A. Leach

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Drought and western corn rootworm (WCR), Diabrotica virgifera virgifera, can have substantial impacts on the potential yield of maize, Zea may L. Maize lines were selected to survey the level of diversity available for primary root elongation maintenance under water stress and three WCR-related traits: WCR damage, root size, and root regrowth. Data analysis suggests that lines belonging to the Tropical/Semi-tropical population structure group are a significant source of alleles which would improve resistance/tolerance to these stressors. Further analysis of the WCR trait data found significant correlations with agronomically important traits related to plant maturity, confirming the impact of maize phenology on WCR damage. This indicates that phase change or changes in biochemical pathways as the plant matures may serve as additional criteria to effectively select germplasm that is resistant/tolerant to WCR feeding. In an effort to identify maize genes responsible for defense against WCR herbivory, a transcriptome analysis discovered that the presence of an endosymbiont, Wolbachia, down-regulated the expression of defense genes. Gene expression time courses suggest WCR elicits a response to herbivory by WCR+wb which was confirmed by a more extensive analysis of the microarray data. Maize defense genes were found to be down-regulated in agreement with the previous study. Transcriptional down-regulation may be the result of transposable element interference or post-transcriptional regulation by small RNAs, i.e. siRNAs or miRNAs. Three classes of miRNA were identified based on their response to WCR+wb, WCR-wb, and control treatments in the CRW3 germplasm; WCR-specific response, Wolbachia-specific response, and generalized defense response. Models based on the miRNA expression patterns along with information from the literature about their targets and downstream effects enabled us to predict phenotypes based on miRNA mediated-changes in gene expression. Results of the GO term enrichment analysis together with miRNA expression analysis support miRNA-mediated post-translational modification as one mechanism underlying the Wolbachia-associated changes in maize gene expression.

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109825 ◽  
Author(s):  
Thaís Barros Rodrigues ◽  
Chitvan Khajuria ◽  
Haichuan Wang ◽  
Natalie Matz ◽  
Danielle Cunha Cardoso ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michael V. Lombardo ◽  
Elena Maria Busuoli ◽  
Laura Schreibman ◽  
Aubyn C. Stahmer ◽  
Tiziano Pramparo ◽  
...  

AbstractEarly detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Aaron Gassmann

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious pests of maize in the United States. Since 2003, transgenic maize that produces insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) has been used to manage western corn rootworm by killing rootworm larvae, which feed on maize roots. In 2009, the first cases of field-evolved resistance to Bt maize were documented. These cases occurred in Iowa and involved maize that produced Bt toxin Cry3Bb1. Since then, resistance has expanded to include other geographies and additional Bt toxins, with some rootworm populations displaying resistance to all commercially available Bt traits. Factors that contributed to field-evolved resistance likely included non-recessive inheritance of resistance, minimal fitness costs of resistance and limited adult dispersal. Additionally, because maize is the primary agricultural crop on which rootworm larvae can survive, continuous maize cultivation, in particular continuous cultivation of Bt maize, appears to be another key factor facilitating resistance evolution. More diversified management of rootworm larvae, including rotating fields out of maize production and using soil-applied insecticide with non-Bt maize, in addition to planting refuges of non-Bt maize, should help to delay the evolution of resistance to current and future transgenic traits.


Sign in / Sign up

Export Citation Format

Share Document