scholarly journals Neutron scattering and microscopy studies of the structure and dynamics of water near a nanostructured hydrophilic copper oxide surface

2019 ◽  
Author(s):  
◽  
James Robert Torres

Recently, it has been shown that superhydrophilic coatings of "grass-like" cupric oxide (CuO) nanostructures can significantly improve the thermal performance of heat transfer devices known as oscillating heat pipes (OHPs). The origin of this enhanced performance is currently unknown, but it is believed to be attributed to the thin film of interfacial water supported by the nanostructures that coat the OHP's interior surface. The aim of this work is to investigate the microscopic origin of enhanced heat transfer at the CuO surface by studying the structure, morphology, freezing/melting behavior, and dynamics of the water in proximity to the CuO coating over time and length scales that span picosecond-to-seconds and angstroms-to-millimeters, respectively . ... Our results demonstrate that water near superhydrophilic CuO nanostructures exhibits low-temperature anomalies in its structure and dynamics at the molecular level-a direction of research that has both applied and fundamental interest. The significantly altered structure and dynamics of the interfacial water could affect the boundary conditions for bulk water motion inside of an OHP during its operation. To test this hypothesis, we have proposed time-resolved neutron imaging experiments to characterize the kinetics of water oscillations in CuO-coated OHPs.

Author(s):  
Chunli Wang ◽  
Zhihao Zhang ◽  
Xiaoheng Fu ◽  
Jing Zhang ◽  
Jan K. G. Dhont
Keyword(s):  

Interfacial water confined in the microemulsions behaviors different to normal bulk water and could affect the reactions involved at the interface. In this work, the content of interfacial and bulk...


2006 ◽  
Vol 59 (2) ◽  
pp. 81 ◽  
Author(s):  
Ales Charvat ◽  
Andreas Bógehold ◽  
Bernd Abel

Liquid water beam desorption mass spectrometry is an intriguing technique to isolate charged molecular aggregates directly from the liquid phase and to analyze them employing sensitive mass spectrometry. The liquid phase in this approach consists of a 10 µm diameter free liquid filament in vacuum which is irradiated by a focussed infrared laser pulse resonant with the OH-stretch vibration of bulk water. Depending upon the laser wavelength, charged (e.g. protonated) macromolecules are isolated from solution through a still poorly characterized mechanism. After the gentle liquid-to-vacuum transfer the low-charge-state aggregates are analyzed using time-of-flight mass spectrometry. A recent variant of the technique uses high performance liquid chromatography valves for local liquid injections of samples in the liquid carrier beam, which enables very low sample consumption and high speed sample analysis. In this review we summarize recent work to characterize the ‘desorption’ or ion isolation mechanism in this type of experiment. A decisive and interesting feature of micro liquid beam desorption mass spectrometry is that — under certain conditions — the gas-phase mass signal for a large number of small as well as supramolecular systems displays a surprisingly linear response on the solution concentration over many orders of magnitude, even for mixtures and complex body fluids. This feature and the all-liquid state nature of the technique makes this technique a solution-type spectroscopy that enables real kinetic studies involving (bio)polymers in solution without the need for internal standards. Two applications of the technique monitoring enzyme digestion of proteins and protein aggregation of an amyloid model system are highlighted, both displaying its potential for monitoring biokinetics in solution.


2020 ◽  
Vol 92 (10) ◽  
pp. 1563-1574
Author(s):  
Marie-Claire Bellissent-Funel

AbstractIn many relevant situations, water is not in its bulk form but instead attached to some substrates or filling some cavities. We shall call water in the latter environment confined water as opposed to bulk water. It is known that the confined water is essential for the stability and the function of biological macromolecules. In this paper, we provide a review of the experimental and computational advances over the past decades concerning the understanding of the structure and dynamics of water confined in aqueous solutions of biological relevance. Examples involving water in solution of organic solutes (cryoprotectants such as dimethylsulfoxide (DMSO), sugars such as trehalose) are provided.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Matthew Collins ◽  
Kam Chana ◽  
Thomas Povey

The high pressure (HP) rotor tip and over-tip casing are often life-limiting features in the turbine stages of current gas turbine engines. This is due to the high thermal load and high temperature cycling at both low and high frequencies. In the last few years, there have been numerous studies of turbine tip heat transfer. Comparatively fewer studies have considered the over-tip casing heat transfer. This is in part, no doubt, due to the more onerous test facility requirements to validate computational simulations. Because the casing potential field is dominated by the passing rotor, to perform representative over-tip measurements a rotating experiment is an essential requirement. This paper details the measurements taken on the Oxford turbine research facility (OTRF), an engine-scale rotating turbine facility which replicates engine-representative conditions of Mach number, Reynolds number, and gas-to-wall temperature ratio. High density arrays of miniature thin-film heat-flux gauges were used with a spatial resolution of 0.8 mm and temporal resolution of ∼120 kHz. The small size of the gauges, the high frequency response, and the improved processing methods allowed very detailed measurements of the heat transfer in this region. Time-resolved measurements of TAW and Nu are presented for the casing region (−30% to +125% CAX) and compared to other results in the literature. The results provide an almost unique data set for calibrating computational fluid dynamics (CFD) tools for heat transfer prediction in this highly unsteady environment dominated by the rotor over-tip flow.


Sign in / Sign up

Export Citation Format

Share Document