scholarly journals Foliar Nematode Aphelenchoides spp. (Nematoda: Aphelenchida: Aphelenchoididae)

EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Lindsay Wheeler ◽  
William Talmadge Crow

There are nematodes of several genera that feed on plant stems and foliage, including Aphelenchoides, Bursaphelenchus, Anguina, Ditylenchus and Litylenchus. Herein, we apply the common name “foliar nematode” specifically to plant-feeding nematodes in the genus Aphelechoides, specifically Aphelenchoides besseyi, Aphelenchoides fragariae, and Aphelenchoides ritzemabosi. While most members of Aphelenchoides are fungivorous (feed on fungi), these three species have populations that are facultative plant-parasites that can feed on live plant tissue. Ten other species of Aphelenchoides also are recognized as facultative plant-parasites, but these are not as commonly encountered or as economically significant as the aforementioned species. Unlike most plant-parasitic nematodes, foliar nematodes can infest the aerial portions of plants rather than dwelling strictly in soil and plant roots. Damage from their feeding can reduce yield in food crops and ruin the appearance of ornamentals.https://edis.ifas.ufl.edu/in1279

2019 ◽  
Vol 20 (22) ◽  
pp. 5566
Author(s):  
Shan-Wen Ding ◽  
Dong-Wei Wang ◽  
Yu Xiang ◽  
Chun-Ling Xu ◽  
Hui Xie

The chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi, is a migratory, plant-parasitic nematode that is widely distributed and infects the aboveground parts of many plants. The fatty acid- and retinoid-binding proteins (FAR) are nematode-specific proteins that are involved in the development, reproduction, and infection of nematodes and are secreted into the tissues to disrupt the plant defense reaction. In this study, we obtained the full-length sequence of the FAR gene (Ar-far-1) from CFN, which is 727 bp and includes a 546 bp ORF that encodes 181 amino acids. Ar-FAR-1 from CFN has the highest sequence similarity to Ab-FAR-1 from A. besseyi, and they are located within the same branch of the phylogenetic tree. Fluorescence-based ligand-binding analysis confirmed that recombinant Ar-FAR-1 was bound to fatty acids and retinol. Ar-far-1 mRNA was expressed in the muscle layer, intestine, female genital system, and egg of CFN, and more highly expressed in females than in males among the four developmental stages of CFN. We demonstrated that the reproduction number and infection capacity of CFN decreased significantly when Ar-far-1 was effectively silenced by in vitro RNAi. Ar-far-1 plays an important role in the development, reproduction, infectivity, and pathogenesis of CFN and may be used as an effective target gene for the control of CFN. The results provide meaningful data about the parasitic and pathogenic genes of CFN to study the interaction mechanism between plant-parasitic nematodes and hosts.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 374
Author(s):  
Hui Feng ◽  
Dongmei Zhou ◽  
Paul Daly ◽  
Xiaoyu Wang ◽  
Lihui Wei

The glycoside hydrolase family 16 (GH16) is widely found in prokaryotes and eukaryotes, and hydrolyzes the β-1,3(4)-linkages in polysaccharides. Notably, the rice white tip nematode Aphelenchoides besseyi harbors a higher number of GH16s compared with other plant-parasitic nematodes. In this work, two GH16 genes, namely AbGH16-1 and AbGH16-2, were isolated and characterized from A. besseyi. The deduced amino acid sequences of AbGH16-1 and AbGH16-2 contained an N-terminal signal peptide and a fungal Lam16A glucanase domain. Phylogenetic analysis revealed that AbGH16-1 and AbGH16-2 clustered with ascomycete GH16s, suggesting AbGH16-1 and AbGH16-2 were acquired by horizontal gene transfer from fungi. In situ hybridization showed that both AbGH16-1 and AbGH16-2 were specifically expressed in the nematode gonads, correlating with qPCR analysis that showed the high transcript levels of the two genes in the female nematodes. AbGH16-1 and AbGH16-2 were also significantly induced in nematodes feeding on Botrytis cinerea. Characterization of the recombinant protein showed AbGH16-1 and AbGH16-2 displayed pronounced inhibition of both conidial germination and germ tube elongation of B. cinerea. In addition, silencing of AbGH16-1 and AbGH16-2 by RNA interference significantly decreased the reproduction ability of A. besseyi and had a profound impact on the development process of offspring in this nematode. These findings have firstly proved that GH16s may play important roles in A.besseyi feeding and reproduction on fungi, which thus provides novel insights into the function of GH16s in plant-parasitic nematodes.


2021 ◽  
Author(s):  
Jung-Kai Hsu ◽  
Chia-Wei Weng ◽  
Jeremy J.W. Chen ◽  
Peichen J. Chen

Abstract Aphelenchoides besseyi could cause great yield loss on rice and many economically important crops. Acetylcholinesterase inhibitors were commonly used to mitigate plant parasitic nematodes. However, increasing nematicide-resistance has been reported due to the extensive use of these chemicals. The correlation between the AChE-inhibitor (fenamiphos) sensitivities and acetylcholinesterase (ace) genes in two isolates of A. besseyi (designated Rl and HSF) was established. The LD50 of fenamiphos to Rl and HSF were 572.2 ppm and 129.4 ppm, respectively, indicating that two nematode isolates had different sensitivities to fenamiphos. Three ace genes were cloned and sequenced in A. besseyi, and their homology was supported by phylogenic analysis with AChEs protein sequences from various vertebrate and invertebrate species. Molecular docking showed that the affinities of each AChEs to fenamiphos were higher in HSF isolate, indicating that there should be point mutations in Rl isolate AChEs. Treating the two isolates with 100 ppm fenamiphos for 12 h, three ace genes of HSF isolate were down-regulated but were up-regulated in Rl isolate. The results suggest that fenamiphos can transcriptionally modulate the expression of ace genes, as well as the variants in AChEs and increased expression of ace genes might be associated with fenamiphos-insensitivity in Rl isolate.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Bu-Yong Wang ◽  
Rong-Rong Wen ◽  
Ling Ma

Abstract, the nematode agent of rice tip white disease, causes huge economic losses in almost all the rice-growing regions of the world. Glutathione peroxidase (GPx), an esophageal glands secretion protein, plays important roles in the parasitism, immune evasion, reproduction and pathogenesis of many plant-parasitic nematodes (PPNs). Therefore, GPx is a promising target for control


EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


Sign in / Sign up

Export Citation Format

Share Document