scholarly journals Improved error of electromagnetic shielding problems by a two-process coupling subproblem technique

2020 ◽  
Vol 23 (2) ◽  
pp. First
Author(s):  
Vuong Quoc Dang

Introduction: The direct application of the classcial finite element method for dealing with magnetodynamic problems consisting of thin regions is extremely difficult or even not possible.  Many authors have been recently developed a thin shell model in order to overcome this drawback. However, this development generally neglects inaccuracies around edges and corners of thin shell, that lead to inaccuracies of the magnetic fields, eddy currents and joule power losses, specially increasing with the thickness. Methods: In this article, we propose a two-process coupling subproblem technique for improving the errors that overcome thin shell assumptions. This technique is  based on the subproblem method to couple SPs in two-processes. The first scenario is an initial problem solved with coils/stranded inductors together with thin region models. The obtained solutions are then considered as volume sources for the second scenario including actual volume improvements that scope with the thin shell assumptions. The final solution is sum up of the subproblem solutions achieved from both the scenarios. The extended method is approached for the h-conformal magnetic formulation. Results: The obtained results of the method are checked/compared to be close to the reference solutions computed from the classcial finite element method and the measured results. This can be pointed out a very good agreement. Conclusion: The extended method has been also successfully applied to the practical problem (TEAM workshop problem 21, model B).

2014 ◽  
Vol 63 (1) ◽  
pp. 107-114
Author(s):  
Dariusz Koteras

Abstract The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1421
Author(s):  
Michał Szulborski ◽  
Sebastian Łapczyński ◽  
Łukasz Kolimas ◽  
Łukasz Kozarek ◽  
Desire Dauphin Rasolomampionona ◽  
...  

In this paper, a detailed three-dimensional, transient, finite element method of fuse link NH000 gG 100 A is proposed. The thermal properties during the operation of the fuses under nominal (100 A) and custom conditions (110 and 120 A) are the main focus of the analyses that were conducted. The work concerns both the outside elements of the fuse link (ceramic body) and the elements inside (current circuit). Both the distribution of the electric current and its impact on the temperature of the construction parts of the fuses during their operating mode have been described. Temperature distribution, power losses and energy dissipation were measured using a numerical model. In order to verify and validate the model, two independent teams of scientists executed experimental research, during which the temperature was measured on different parts of the device involving the rated current. Finally, the two sets of results were put together and compared with those obtained from the simulation tests. A possible significant correlation between the results of the empirical tests and the simulation work was highlighted.


Author(s):  
Bartosz Łuczak ◽  
Bartosz Firlik ◽  
Tomasz Staśkiewicz ◽  
Wojciech Sumelka

In tram operations, flange wear is predominant due to the low-radius curves and inappropriate technical conditions of the infrastructure; hence, investigations should be focused on the interaction between the wheel flange and the rail gauge corner. Moreover, the calculation methods based on the Hertzian model (elliptic contact patch) provide less accurate results due to the contact occurrence in the wheel flange region. This paper presents a methodology of a finite element method to predict the tram wheel wear in complex motions. The new procedure is based on the Abaqus software and several other sub-procedures written in Python and Fortran. Multibody simulations were used to determine the wheel–rail alignment. In this method, accuracy was chosen at the expense of the computational effort. The main steps are: preparation of models and ride scenarios, multibody simulation for calculating the wheel–rail alignment for different track scenarios and multiple runs of finite element method analysis to determine the wear magnitude. The proposed methodology presents a good agreement with the measurements and can be considered as guidelines for a proper configuration of the flange-designing experimental setup where the influence of the technical conditions of the infrastructure should be introduced adequately.


Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


1975 ◽  
Vol 10 (3) ◽  
pp. 167-171 ◽  
Author(s):  
F Ginesu ◽  
B Picasso ◽  
P Priolo

Results on the plastic collapse behaviour of an axisymmetric rotating shell, obtained by Limit Analysis and the Finite Element Method, are in good agreement with experimental data. The Finite Element Method, though computationally rather costly, permits, however, a more complete analysis of elasto-plastic behaviour. For the present case, the Limit Analysis has the advantage of greater computational simplicity and leads to a quite satisfactory forecast of collapse speed from the engineering point of view.


2004 ◽  
Vol 124 (9) ◽  
pp. 863-870 ◽  
Author(s):  
Yoshihiro Kawase ◽  
Tadashi Yamaguchi ◽  
Ryoji Okayasu ◽  
Kei Iwashita ◽  
Masaaki Aoki ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
pp. 01
Author(s):  
Nassima M ziou ◽  
Hani Benguesmia ◽  
Hilal Rahali

The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
C. Mahesh ◽  
K. Govindarajulu ◽  
V. Balakrishna Murthy

Finite element method is effectively used to homogenize the thermal conductivity of FRP composites consisting of hybrid materials and fibre-matrix debonds at some of the fibres. The homogenized result at microlevel is used to determine the property of the layer using macromechanics principles; thereby, it is possible to minimize the computational efforts required to solve the problem as in state through only micromechanics approach. The working of the proposed procedure is verified for three different problems: (i) hybrid composite having two different fibres in alternate layers, (ii) fibre-matrix interface debond in alternate layers, and (iii) fibre-matrix interface debond at one fibre in a group of four fibres in one unit cell. It is observed that the results are in good agreement with those obtained through pure micro-mechanics approach.


Sign in / Sign up

Export Citation Format

Share Document