scholarly journals Thermoplastic polyurethane flame retardant using phosphorus/phosphorus-nitrogen compounds

Author(s):  
Pham Thi Thuy Linh ◽  
Hoang Thi Dong Quy

In order to improve fire performance of thermoplastic polyurethane (TPU) material, halogen-free flame retardants (triphenylphosphate- TPP and diamonium hydrogen phosphate-DAP) were studied in an attempt to obtain UL-94V ratings. The fire behaviors and thermal stability properties were evaluated using UL-94 vertical test and thermogravimetric analysis (TGA). The UL- 94V results showed that V-0 ratings were achieved at 5 wt% of DAP or 7.5 wt% loading of TPP. The incorporation of these flame retardant (FR) increases the flame retardant properties as well as the amounts of charred residues protecting the mixture from further degradation. This assertion could be accepted when observing that the char residual of TPU/DAP mixture at 500–600oC was much higher than that of neat TPU. The char layer limited the amount of fuel available and insulate the underlying composite material from the flame and, thus, make further degradation more difficult. The mechanism of flame retardants was also discussed in this study.

2015 ◽  
Vol 18 (4) ◽  
pp. 16-22
Author(s):  
Linh Thi Thuy Pham ◽  
Hien Thi Thu Nguyen ◽  
Quy Thi Dong Hoang

In order to improve the fire performance of composite materials, halogen-free flame retardant (diamonium hydrogen phosphate- DAP) was studied in an attempt to obtain UL-94 ratings for composite PVC-wood flour (PVC-WF). The fire behaviors and thermal stability properties were evaluated using UL- 94 vertical test, LOI test and thermogravimetric analysis (TGA). The UL- 94 test results show that V-0 rating is achieved at 1.5 wt% of DAP loading. The incorporation of halogene-free flame retardant (FR) increases the flame retardant properties as well as the amounts of charred residues protecting the mixture from further degradation. This assertion can be accepted when observing that the char residual of PVC-WF/DAP mixture at 600 oC is much higher than that of neat PVC-WF. The char layer may limit the amount of fuel available and insulate the underlying composite material from the flame and, thus, inhibit further degradation. This FR is a promising candidate that could replace the halogenbased flame retardant.


2015 ◽  
Vol 1107 ◽  
pp. 131-136
Author(s):  
A.I.H.Dayang Habibah ◽  
Abd Rahim Ruhida

Legislation on fire safety requirements especially in the USA and UK has been the driving force behind the use of halogen-free flame retardants (FR) in recent years. The present study describes the effect of inorganic fillers, namely aluminium hydroxides (ATH) on epoxidized natural rubber (ENR) in order to increase its flame retardant capability. Two different types of ATH, a standard type Apyral 60 CD (ATH 60) and a submicron sized Apyral 200 SM (ATH 200) were used. The flame-retardant ENR composite was characterized by limiting oxygen index (LOI), UL-94V, and thermogravimetric analysis (TGA) to study the combustion behavior and thermal stability. The finer particles size (ATH 200) as expected produced better flame retardant properties (measured by LOI) compared to ATH 60; however, the difference between the values is marginal. It was also observed that a combination of 100 pphr ATH 200 and 60 pphr ATH 60 gave the highest LOI value (29.4%) in ENR compounds. The compound was V0 rated in UL-94V burn test. Even at the higher loading, it was also found that the compound exhibited lower viscosity indicating its easier processability.


2020 ◽  
Vol 993 ◽  
pp. 669-677
Author(s):  
Hui Min Ke ◽  
Ri Peng Zhu ◽  
Jing Hong Ma ◽  
Jing Hua Gong

Polyurethane (PU) superfine fiber leathers have been widely used in people's life. However, the flammability brings potential risks to their application. Therefore, more and more attention has been paid to the flame retardant modification of PU leathers. In the 1980s, researchers found that some brominated flame retardants produced dioxins during combustion. In 2007, the EU began implementing the REACH regulation, which restricted the use of certain halogenated flame retardants, so a majority of studies focused on halogen-free flame retardant modification. In addition, the halogen-free flame retardant PU should own a better alkali resistance, because alkali treatment is needed in the forming process of the superfine fiber leather. In this paper, two different halogen-free flame retardants were blended with solvent-based PU. The flame retardant properties and alkali resistance of the flame retardant PU were studied by limiting oxygen index (LOI) test, vertical burning (UL-94) test, and thermogravimetry-infrared spectroscopy (TG-FTIR). It was found that BY-90 system flame retardant could be uniformly dispersed in the PU matrix. And when its additive volume was 27%, the LOI value of the flame retardant PU was 27.1%, the vertical burning test could reach V-0 level. Moreover, it also had good alkali resistance. The LOI value remained at 26.1% after the alkali treatment at 90 °C for 40 min in the 30g/L NaOH solution.


2018 ◽  
Vol 1 (6) ◽  
pp. 192-196
Author(s):  
Woojung Kim ◽  
Dong Quy Hoang Thi

In order to find an effective halogen-free flame retardant for acrylonitrile-butadienestyrene copolymer (ABS), organo-phosphorus compounds were studied and their flame retarding performances were determined by UL 94 vertical test. It is found that the flame retardancy strongly depends on phosphorus (P) content of organophosphorus compounds. Only the mixture of ABS with 2-(6-oxido-6Hdibenz< c,e><1,2>oxaphosphorin-6-yl) methyl diethyl phosphinate (ODOPM-DE), which has the highest P content, i.e., 17.68 % gives V-0 rating for the 70/30 composition.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jie Liu ◽  
Jiayou Xu ◽  
Kaidan Li ◽  
Yongheng Chen

A novel charring agent, poly(p-ethylene terephthalamide) (PETA), for halogen-free flame retardant polypropylene was synthesized by using p-phthaloyl chloride (TPC) and ethylenediamine through solution polycondensation at low temperature, and the effects of PETA on flame retardance of polypropylene (PP)/IFR systems were studied. The experimental results showed that PETA could considerably enhance the fire retardant performance as proved by evidence of the increase of limiting oxygen index (LOI) values, the results of UL-94 tests, and cone calorimeter tests (CCT). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) demonstrated that an appropriate amount of PETA could react with PP/IFR system to form cross-link network; a more compact char layer could be formed which was responsible for the improved thermal and flame retardant properties of PP/IFR systems. However, the superfluous amount of PETA would play the negative role.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 540
Author(s):  
Yukyung Kim ◽  
Sanghyuck Lee ◽  
Hyeonseok Yoon

Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.


2019 ◽  
Vol 37 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Xi Cheng ◽  
Jianming Wu ◽  
Yulin Li ◽  
Chenguang Yao ◽  
Guisheng Yang

Aluminum hypophosphite combined with melamine cyanurate and poly(phenylene oxide) was applied to flame-retard TPE-S system (blends of SEBS and polyolefin). The flame-retardant properties of the TPE-S/AHP/MCA/PPO were investigated by LOI and vertical burning test (UL-94). The results indicated that TPE-S containing 16 wt% AHP, 20 wt% MCA, and 10 wt% PPO reached a V-0 rating in the UL-94 test, and its LOI value was 28.2%. It performed well in the cone calorimeter (reduction in peak heat release rate from 2001 to 494 kW m−2). Thermogravimetric-Fourier transform infrared spectroscopy tests showed that AHP and MCA acted in gaseous phase, while AHP and PPO helped to form char residue. The SEM graphs demonstrated that continuous and compact films cover bubbles of the char layer in TPE-S/AHP/MCA/PPO. The proposed flame-retardant mechanisms of such systems were summarized.


2011 ◽  
Vol 236-238 ◽  
pp. 1152-1155
Author(s):  
Lei Gao ◽  
Bo Wen Cheng ◽  
Jun Song ◽  
Zeng Geng Guo ◽  
Fei Lu ◽  
...  

This paper has studied the structure and flame-retardant properties of flame-retardant cellulose fiber with DDPSN as flame retardant. The flame retardants was uniformly dispersed in the cellulose /[Amim]Cl Solution to obtain the good spinnable dope, then the dope was wet-spun. Effects of the flame-retardant contention the fiber structure and properties were investigated. The surface of the flame-retardant cellulose fiber was observed using field emission scanning electron microscope (FESEM). Besides, through the Simultaneous thermal analysis, it has been shown that, with the increase of fame retardant, the degree of fame resistance was obviously improved. The flame retardant acted greatly in condensed phase during the fiber degradation and remained mainly in residues after degradation, the experiments show that the flame-retardant properties of flame-retardant cellulose fiber with 20wt% DDPSN was obvious.


Sign in / Sign up

Export Citation Format

Share Document