scholarly journals The current state of surface waters in the Ilek River basin within the Aktobe region

Author(s):  
E.Kh. Mendybaev ◽  

The article is devoted to the study of the Ilek River basin. The article gives a physical and geographical description of the basin territory. The article considers the hydrological regime of the Ilek River and its tributaries as a result of expeditionary observations in 2018-2019. The article presents results of chemical analyzes of surface water samples from key observation sites located along the perimeter of the river (study area). After two years of fact-finding, a surface water geodatabase was created to integrate data with published literature, for forecasting and modelling geo-environmental zoning. There are also described the main sources of pollution in the Ilek River, and factors in the formation of anthropogenic geosystems. The scientific article also describes the main sources of pollution of the Ilek River, lists the factors of the formation of anthropogenic geosystems.

2001 ◽  
Vol 67 (3) ◽  
pp. 1123-1127 ◽  
Author(s):  
Otto D. Simmons ◽  
Mark D. Sobsey ◽  
Christopher D. Heaney ◽  
Frank W. Schaefer ◽  
Donna S. Francy

ABSTRACT The protozoan parasite Cryptosporidium parvumis known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4′,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvumoocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.


2021 ◽  
Author(s):  
Randolph Singh ◽  
Adelene Lai ◽  
Jessy Krier ◽  
Todor Kondić ◽  
Philippe Diderich ◽  
...  

<p>This pre-print describes the analysis of pharmaceuticals and their transformation products in surface water samples collected in Luxembourg from 2019 to 2020. Details of the experimental and computational tools and workflows used are fully described in the manuscript. Links to the suspect lists, codes used, and data files are also provided.</p>


Author(s):  
Dimitri Tomovski ◽  
Trajče Stafilov ◽  
Robert Šajn ◽  
Katerina Bačeva Andonovska

An investigation of the distribution of 23 chemical elements (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sr, V and Zn) in surface water samples from the entire basin of the Crna River, Republic of Macedonia, was carried out. In total 31 water samples were collected, from which 8 samples from the Crna River and 4 samples from four main tributaries of Crna River in the Pelagonia Valley (Blato, Prilepska Reka, Dragor and Jelaška Reka). Also, surface water samples were collected from 3 locations in the Tikveš Lake, 8 locations from the Majdanska River and river of Blašnica before its inflow into the Tikveš Lake and from 7 locations of the lower course of the Crna River after the dam of Tikveš Lake until its inflow into the river of Vardar. Determination of the concen-tration of the investigated elements was performed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). All data obtained for the analyzed samples were statistically processed using software Stat Soft 11.0 where the descriptive statistical analysis of the value for the concentration of the elements was performed. The maps of spatial distribution of the concentration for each element and a histograms for the representation of elements with mean values of the concentrations by regions, were also prepared. The obtained results show that the concentration of investigated element are mainly followed the lithology of the region. However, higher concentrations of arsenic were found in the water samples from the river of Blašnica which is a result of anthropogenic influence from the abounded Allchar mine on the Kožuf Mountain. Also, the increased concentrations of nickel were found in the samples from the lower couse of the Crna River after the dam of Tikveš Lake due to the anthropogenic influence from the ferronickel smelter plant Feni Industry, which can influence the quality parameters of surface waters.


2015 ◽  
Vol 6 (1) ◽  
pp. 131-140
Author(s):  
MF Karim ◽  
MW Zaman ◽  
R Sultana ◽  
MU Nizam ◽  
MR Kamruzzaman

A study was carried out with 25 pond water samples of Bhola Sadar Upazila to assess the quality of surface water for irrigation, aquaculture, drinking and livestock consumption. Chemical analyses of different parameters were done to assess the quality of water. All of the water samples showed slightly acidic in nature. Sixteen surface water samples were not suitable for drinking and aquaculture in respect of pH (pH <6.5). Electrical conductivity (EC) categorized the waters as “low salinity” (C1) to “medium salinity” (C2) class for irrigation. With respect to total dissolved solids surface waters were within “highest desirable limit” for drinking and irrigation and suitable for livestock consumption and aquaculture. Calcium and Magnesium content rated the samples as “maximum permissible” and “highest desirable” limit for drinking. All the samples were suitable for drinking in case of Na and K, 21 samples were not suitable for aquaculture due to higher (>5.0 mg L-1) K content. Six samples were unsuitable for livestock due to higher (Cl >30mgL- 1) Cl values. SSP rated 9 samples as “good”, 1 as “excellent”, 6 as “doubtful” and 9 as “permissible” for irrigation. With respect to RSC 21 samples were “suitable”, 3 were “marginal” and 1 was “unsuitable” for irrigation. Hardness classified 14 samples within “moderately hard”, 10 within “soft” and only one as “hard” limit for irrigation and 1 sample (No. 16) was unsuitable for livestock consumption. P, B, Cu and As concentration categorized all the samples suitable for irrigation, aquaculture, drinking and livestock consumption.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22053 J. Environ. Sci. & Natural Resources, 6(1): 131-140 2013


Author(s):  
P. Sukhyj ◽  
I. Berezka

A study of climate Siret River Basin within the Chernivtsi region. Designated hydrographic and hydrometric characteristics of rivers. The relationship between climatic conditions and the hydrographic network and the regime of surface water basin of the Upper Siret. Key words: river basin; climate; surface water; hydrological regime.


Author(s):  

Surface water bodies are most vulnerable to chemical pollution. Objective: to study the hydro/chemical indicators of the state of surface waters of the Yamalo-Nenetsk Autonomous District and to assess their quality. In 2018, original studies of water bodies located in scientific testing grounds of the Yamalo-Nenetsk Autonomous District were conducted. The reservoirs are located in the zone of the northern and middle taiga, southern tundra and forest-tundra, on the eastern slope of the Polar Urals. Sampling was carried out according to generally accepted methods. In the surface water samples, the main hydro/ chemical parameters were determined. For an integrated assessment of water quality, the water pollution index (WPI) was used. The surface waters of the examined water bodies belong to low mineralized waters with low concentrations of basic anions and cations. All studied waters in terms of BOD5are classified as dirty and very dirty waters. In the surface water samples of the Polar Urals, high concentrations of benz [a] pyrene were detected. The waters of the Tazovsky landfill belong to moderately polluted waters, the waters of the Purriver are polluted, the waters of the Syny river are dirty. The water bodies of the Polar Urals are very dirty. High values of IZV are associated with elevated concentrations of benz(a)pyrene, BOD5, manganese, copper, zinc, and aluminum. The water pollution index more characterizes the unfavorable biogeochemical situation in the region. An elevated level of technogenic pollution due to benzo(a)pyrene, the source of which is the combustion of fossil fuels (pyrogenic), is established in the water bodies of the Polar Urals. The surface waters of the surveyed water bodies are low-quality waters.


2017 ◽  
Vol 68 (8) ◽  
pp. 1716-1722 ◽  
Author(s):  
Vasile Ion Iancu ◽  
Toma Galaon ◽  
Marcela Niculescu ◽  
Carol Blaziu Lehr

Increasing and widespread use of neonicotinoid insecticides in all world, together with their highly toxicity to invertebrates and environmental persistence mean that surface waters need to be monitored for these compounds. In the 2015, neonicotinoid insecticides have been incorporated in the watch list of substances for a European Union monitoring program (495/2015/ EU). A new method using automated solid phase extraction (SPE) with polymeric cartridges (OASIS HLB) followed by LC-MS/MS provided good separation of the most common neonicotindoid compounds. The method was developed for the determination of four neonicotinoid insecticides (nitenpyram, thiamethoxam, clothianidin, acetamiprid) in surface water with low limit of quantification (0.3-0.9 ng/L, nanograms per liter). Recoveries in surface water samples fortified at 200 ng/L for each compound ranged from 71.4 to 109.9 %; relative standard deviation ranged from 4 to 9%. The method was applied to water samples from four streams in Romania, Danube River and its tributaries (Arges River, Jiu River, and Olt River). The surface water samples were found to be contaminated clothianidin (1.08-6.4 ng/L) and by thiamethoxam (1.1-3.8ng/L). The highest concentrations were recorded in Danube River in Oltenita point (6.4ng/L) and in Gura-Vaii point (5.5ng/L). The concentration of acetamiprid and nitenpyram were situated below limit of quantification in all samples.


2020 ◽  
Author(s):  
Alexander Ahring ◽  
Marvin Kothe ◽  
Christian Gattke ◽  
Ekkehard Christoffels ◽  
Bernd Diekkrüger

&lt;p&gt;Inland surface waters like rivers, streams, lakes and reservoirs are subject to anthropogenic pollutant emissions from various sources. These emissions can have severe negative impacts on surface water ecology, as well as human health when surface waters are used for recreational activities, irrigation of cropland or drinking water production. In order to protect aquatic ecosystems and freshwater resources, the European Water Framework Directive (WFD) sets specific quality requirements which the EU member states must meet until 2027 for every water body.&lt;/p&gt;&lt;p&gt;Implementing effective measures and emission control strategies requires knowledge about the important emission pathways in a given river basin. However, due to the abundance of pollution sources and the heterogeneity of emission pathways in time and space, it is not feasible to gain this knowledge via water quality monitoring alone. In our study, we aim to combine SWAT ecohydrological modelling and long term water quality monitoring data to establish a spatially differentiated nitrogen emission inventory on the sub-catchment scale. SWAT (short for Soil and Water Assessment Tool) is a semi-distributed, dynamic and process-driven watershed model capable of simulating long term hydrology as well as nutrient fluxes on a daily time step.&lt;/p&gt;&lt;p&gt;The study area is the Swist river basin in North Rhine-Westphalia (Germany). Belonging to the Rhine river system, the Swist is the largest tributary of the Erft River and drains a basin area of approximately 290&amp;#160;km&amp;#178;. As part of its legal obligations and research activities, the Erftverband local waterboard collects a large variety of long term monitoring data in the Swist river catchment, which is available for this study. This includes operational data from the wastewater treatment plants in the watershed, discharge data from four stream gauging stations, river water quality data from continuous and discontinuous monitoring, groundwater quality data as well as quality data from surface, sub-surface and tile drainage runoff from various land uses.&lt;/p&gt;&lt;p&gt;Our contribution will be made up of two equal parts: First, we will present our water quality monitoring activities in the catchment and the related data pool outlined above, with special emphasis on recent monitoring results from agricultural tile drainages. Apart from nutrients and other pollutants, the data suggests considerable inputs of herbicide transformation products like Chloridazon-Desphenyl (maximum concentration measured: 15&amp;#160;&amp;#181;g/l) via this pathway. Second, we will explain how we integrate the monitoring data into the SWAT simulations and how we tackle related challenges like parameter equifinality (meaning that multiple parameter sets can yield similar or identical model outputs). The overall goal is to take all possible emission pathways into consideration, including those often neglected in past SWAT studies, like tile drainages and combined sewer overflows (CSO). As the Swist catchment is affected by groundwater extraction due to lignite mining in the Lower Rhine Bay area, we will discuss how this is considered during SWAT model setup and calibration, and will present first simulation results concerning catchment hydrology.&lt;/p&gt;


1990 ◽  
Vol 33-34 ◽  
pp. 38-49

The river Krivaja makes a unique water course in Bosnia and Herzegovina, the hydrographic system of which is located in one of the largest ophiolotic areas in Yugoslavia. In this way, a specific hydrological network of short surface water courses has been created, which feed themselves mainly with the suface waters and waters from the shallow groundwater of the ophiolitic layers. During the survey of the water level, water flow and flow off categories, differences between the upper and lower river-basin parts were observed, which showed that the dominant natural-geographic factors affected most directly the regime categories. With regard to the morphological-morpholographical, morphometrical and hydrological conditions in the bakin and valley, specially in its longitudinal profile sectors, particulary from Olovo to Careva Cuprija, the high wave water retardations occur, which cause floods in the river valley bottom. The Krivaja river basin and valley represented until recently an exclusively natural – territorial aqual complex. Excessive exploitation, especially the exploitation of the forest resources, have disturbed the balance of the natural conditions, which has far-reaching consequences on the Krivaja hydrological regime.


2019 ◽  
Vol 5 (7) ◽  
pp. 1599-1608 ◽  
Author(s):  
Ghulam Shabir Solangi ◽  
Altaf Ali Siyal ◽  
Pirah Siyal

The present study was conducted to analyze the suitability of groundwater and surface water of the Indus Delta, Pakistan for domestic and irrigation purposes based on the concentrations of arsenic (As), total dissolved solids (TDS), and chloride (Cl). Around 180 georeferenced groundwater and 50 surface water samples randomly collected were analyzed and mapped spatially using ArcGIS 10.5 software. The results were compared with their respective WHO and FAO guidelines. The analysis revealed that as in groundwater and surface water samples ranged up to 200, and 25 µg/L respectively. Similarly, the TDS in the groundwater and surface water ranged from 203 to 17, 664 mg/L and 378 to 38,272 mg/L respectively. The Cl in groundwater and surface water varied between 131 and 6,275 mg/L and 440 to 17,406 mg/L respectively. Overall, about 18%, 87% and 94% of the groundwater, and 10%, 92% and 56% of the surface waters possessed higher concentrations of As, TDS, and Cl, respectively. The higher levels of Cl in the samples are attributed to subsurface seawater intrusion in the delta. Analysis results and GIS mapping of water quality parameters revealed that in most of the delta, the quality of water was not suitable for drinking and agricultural purposes, thus should be properly treated before its use.


Sign in / Sign up

Export Citation Format

Share Document