scholarly journals Effect of Fungus-Growing Termite on Soil CO2 Emission at Termitaria Scale in Dry Evergreen Forest, Thailand

2021 ◽  
Vol 19 (6) ◽  
pp. 1-11
Author(s):  
Warin Boonriam ◽  
◽  
Pongthep Suwanwaree ◽  
Sasitorn Hasin ◽  
Phuvasa Chanonmuang ◽  
...  

Termites are one of the major contributors to high spatial variability in soil respiration. Although epigeal termite mounds are considered as a point of high CO2 effluxes, the patterns of mound CO2 effluxes are different, especially the mound of fungus-growing termites in a tropical forest. This study quantified the effects of a fungus-growing termite (Macrotermes carbonarius) associated with soil CO2 emission by considering their nesting pattern in dry evergreen forest, Thailand. A total of six mounds of M. carbonarius were measured for CO2 efflux rates on their mounds and surrounding soils in dry and wet seasons. Also, measurement points were investigated for the active underground passages at the top 10% of among efflux rates. The mean rate of CO2 emission from termitaria of M. carbonarius was 7.66 µmol CO2/m2/s, consisting of 2.94 and 9.11 µmol CO2/m2/s from their above mound and underground passages (the rate reached up to 50.00 µmol CO2/m2/s), respectively. While the CO2 emission rate from the surrounding soil alone was 6.86 µmol CO2/m2/s. The results showed that the termitaria of M. carbonarius contributed 8.4% to soil respiration at the termitaria scale. The study suggests that fungus-growing termites cause a local and strong variation in soil respiration through underground passages radiating out from the mounds in dry evergreen forest.

1998 ◽  
Vol 28 (4) ◽  
pp. 534-539 ◽  
Author(s):  
Robert G Striegl ◽  
Kimberly P Wickland

Quantification of the components of ecosystem respiration is essential to understanding carbon (C) cycling of natural and disturbed landscapes. Soil respiration, which includes autotrophic and heterotrophic respiration from throughout the soil profile, is the second largest flux in the global carbon cycle. We measured soil respiration (soil CO2 emission) at an undisturbed mature jack pine (Pinus banksiana Lamb.) stand in Saskatchewan (old jack pine, OJP), and at a formerly continuous portion of the stand that was clear-cut during the previous winter (clear-cut, CC). Tree harvesting reduced soil CO2 emission from ~22.5 to ~9.1 mol CO2 cdot m-2 for the 1994 growing season. OJP was a small net sink of atmospheric CO2, while CC was a net source of CO2. Winter emissions were similar at both sites. Reduction of soil respiration was attributed to disruption of the soil surface and to the death of tree roots. Flux simulations for CC and OJP identify 40% of CO2 emission at the undisturbed OJP site as near-surface respiration, 25% as deep-soil respiration, and 35% as tree-root respiration. The near-surface component was larger than the estimated annual C input to soil, suggesting fast C turnover and no net C accumulation in these boreal uplands in 1994.


2021 ◽  
Vol 13 (8) ◽  
pp. 4571
Author(s):  
Enzhu Hu ◽  
Zhimin Ren ◽  
Sheng Xu ◽  
Weiwei Zhang

Elevated tropospheric ozone (O3) concentration may substantially influence the below-ground processes of terrestrial ecosystems. Nevertheless, a comprehensive and quantitative understanding of O3 impacts on soil CO2 emission remains elusive, making the future sources or sinks of soil C uncertain. In this study, 77 pairs of observations (i.e., elevated O3 concentration treatment versus control) extracted from 16 peer-reviewed studies were synthesized using meta-analysis. The results depicted that soil CO2 efflux was significantly reduced under short-term O3 exposure (≤1 year, p < 0.05), while it was increased under extended duration (>1 year, p < 0.05). Particularly, soil CO2 emission was stimulated in nonagricultural ecosystems, in the free-air CO2 enrichment (FACE) experiment, and in the soils of lower pH. The effect sizes of soil CO2 efflux were significantly positively correlated with experimental duration and were significantly negatively correlated with soil pH, respectively. The ozone effect on soil CO2 efflux would be enhanced at warm temperatures and high precipitation. The duration of O3 exposure was the fundamental factor in analyzing O3 impacts on soil CO2 emission.


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 143 ◽  
Author(s):  
Dafeng Hui ◽  
Chih-Li Yu ◽  
Qi Deng ◽  
Priya Saini ◽  
Kenya Collins ◽  
...  

Application of nitrogen (N) fertilizer plus biochar may increase crop yield, but how biochar will interact with N fertilization to affect bioenergy crop switchgrass physiology, biomass, and soil CO2 emission (i.e., soil respiration) from switchgrass fields remains unclear. Here, we assessed this issue by conducting a field experiment near Nashville TN with two levels of biochar treatment (a control without biochar addition and biochar addition of 9 Mg ha−1), and four N fertilization levels (0 kg N ha−1, 17 kg N ha−1, 34 kg N ha−1, and 67 kg N ha−1, labeled as ON, LN, MN, and HN, respectively). Results showed that both biochar addition and N fertilization did not influence switchgrass leaf photosynthesis and biomass, but biochar addition enhanced leaf transpiration, and reduced water use efficiency. Soil respiration was reduced by biochar addition, but significantly enhanced by N fertilization. Biochar and N fertilization interactively influenced soil respiration and seasonal variation of soil respiration was mostly controlled by soil temperature. Our results indicated that switchgrass can maintain high productivity without much N input, at least for several years. The findings from this study are useful to optimize N fertilization and biochar addition in the switchgrass fields for maintaining relatively high productive switchgrass biomass while reducing soil CO2 emission.


2012 ◽  
Vol 36 (5) ◽  
pp. 1466-1475 ◽  
Author(s):  
Daniel De Bortoli Teixeira ◽  
Elton da Silva Bicalho ◽  
Alan Rodrigo Panosso ◽  
Luciano Ito Perillo ◽  
Juliano Luciani Iamaguti ◽  
...  

The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.


Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 19-27 ◽  
Author(s):  
Liziane de Figueiredo Brito ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Newton La Scala Junior

The spatial variability of soil CO2 emission is controlled by several properties related to the production and transport of CO2 inside the soil. Considering that soil properties are also influenced by topography, the objective of this work was to investigate the spatial variability of soil CO2 emission in three different topographic positions in an area cultivated with sugarcane, just after mechanical harvest. One location was selected on a concave-shaped form and two others on linear-shaped form (in back-slope and foot-slope). Three grids were installed, one in each location, containing 69 points and measuring 90 x 90 m each. The spatial variability of soil CO2 emission was characterized by means of semivariance. Spatial variability models derived from soil CO2 emission were exponential in the concave location while spherical models fitted better in the linear shaped areas. The degree of spatial dependence was moderate in all cases and the range of spatial dependence for the CO2 emission in the concave area was 44.5 m, higher than the mean value obtained for the linear shaped areas (20.65 m). The spatial distribution maps of soil CO2 emission indicate a higher discontinuity of emission in the linear form when compared to the concave form.


2020 ◽  
Vol 8 ◽  
pp. 69-81
Author(s):  
Saraswoti Byanjankar ◽  
Man Kumar Dhamala ◽  
Sanu Raja Maharjan ◽  
Sadhana Pradhanang Kayastha

Rising atmospheric CO2 and temperature are altering ecosystems’ carbon cycle. Soil respiration is a potential natural source of atmospheric CO2, an important terrestrial process to characterize soil as a carbon source or sink. Research carried was out in Annapurna Conservation Area (ACAP) as climate change poses special problems for mountain protected areas. Nepal has targeted to reduce the emissions resulting from land-use change by enhancing forest carbon stock by 5% above the 2015 level within 2025. In this case, identifying, quantifying and addressing different potential emission sources are very important. Soil respiration is the process of measuring natural carbon emissions from soil. The study in ACAP soil carbon emission from the forest, grassland, and agricultural lands was investigated using the close chamber method. The global temperature rise has been set to a global 2 °C below the preindustrial period by the IPCC. The rise in temperature has a positive feedback response over soil respiration by increasing CO2 emission. The study shows the potential simulation of soil CO2 emission by 0.217 mg m-2 m-1 in the forest, 0.359 mgm-2 m-1 in grassland, and 0.457 mg m-2 m-1 in agricultural land in October in ACAP.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Junfeng Wang

Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming. However, the dynamics of annual soil respiration (Rs) under long-term warming and the determined factors are still not very clear. Using open-top chambers (OTC), we assessed the effects of two-year experimental warming on the soil CO2 emission and the Q10 value (temperature sensitivity coefficient) under different warming magnitudes. Our study showed that the soil CO2 efflux rate in the warmed plots were 1.22 and 2.32 times higher compared to that of controlled plots. However, the Q10 value decreased by 45.06% and 50.34% respectively as the warming magnitude increased. These results suggested that soil moisture decreasing under global warming would enhance soil CO2 emission and lower the temperature sensitivity of soil respiration rate of the alpine meadow ecosystem in the permafrost region on the Tibetan Plateau. Thus, it is necessary to take into account the combined effect of ground surface warming and soil moisture decrease on the Rs in order to comprehensively evaluate the carbon emissions of the alpine meadow ecosystem, especially in short and medium terms.


2013 ◽  
Vol 671-674 ◽  
pp. 2709-2714
Author(s):  
Xin Wang Xu ◽  
Xiao Qin He ◽  
Ju Feng Zhen

Based on a situ experiment in the Yangtze River Region, the CO2 emission flux of the natural wetland and the different reclamation types of soil during the non-growth season were investigated in this paper. The results showed that the contribution of soil respiration (SR) to the atmospheric CO2 concentration is wetland<dry land<paddy field..Furthermore, there was a significant positive correlation between the soil respiration and air temperature and soil temperature in three soil type . It concluded that reclamation of fresh water wetland significantly increased SR and soil CO2 emission from soil which was affected greatly by environmental temperature and reduced soil sequestration.


2019 ◽  
Author(s):  
Yongwon Kim ◽  
Sang-Jong Park ◽  
Bang-Yong Lee

Abstract. Soil CO2 efflux-measurements represent an important component for estimating an annual carbon budget in response to changes in increasing air temperature, degradation of permafrost, and snow-covered extents in the Subarctic and Arctic. However, it is not widely known what is the effect of curstose lichen (Ochrolecia frigida) infected sphagnum moss on soil CO2 emission, despite the significant ecological function of sphagnum, and how lichen gradually causes the withering to death of intact sphagnum moss. Here, continuous soil CO2 efflux measurements by a forced diffusion (FD) chamber were investigated for intact and crustose lichen sphagnum moss covering over a tundra ecosystem of western Alaska during the growing seasons of 2015 and 2016. We found that CO2 efflux in crustose lichen during the growing season of 2016 was 14 % higher than in healthy sphagnum moss community, suggesting that temperature and soil moisture are invaluable drivers for stimulating soil CO2 efflux, regardless of the restraining functions of soil moisture over emitting soil carbon. Soil moisture does not influence soil CO2 emission in crustose lichen, reflecting a limit of ecological and thermal functions relative to intact sphagnum moss. During the growing season of 2015, there is no significant difference between soil CO2 effluxes in intact and crustose lichen sphagnum moss patches, based on a one-way ANOVA at the 95 % confidence level (p 


Sign in / Sign up

Export Citation Format

Share Document