scholarly journals Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection

Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 4-14
Author(s):  
Alexey S. Averin ◽  
Yuri N. Utkin

Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.

2020 ◽  
Vol 17 (3) ◽  
pp. 241-254
Author(s):  
Yaqiong Zhang ◽  
Zhiping Jia ◽  
Yunyang Liu ◽  
Xinwen Zhou ◽  
Yi Kong

Background: Deinagkistrodon acutus (D. acutus) and Bungarus multicinctus (B. multicinctus) as traditional medicines have been used for hundreds of years in China. The venoms of these two species have strong toxicity on the victims. Objective: The objective of this study is to reveal the profile of venom proteins and peptides of D. acutus and B. multicinctus. Method: Ultrafiltration, SDS-PAGE coupled with in-gel tryptic digestion and Liquid Chromatography- Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS) were used to characterize proteins and peptides of venoms of D. acutus and B. multicinctus. Results: In the D. acutus venom, 67 proteins (16 protein families) were identified, and snake venom metalloproteinases (SVMPs, 38.0%) and snake venom C-type lectins (snaclecs, 36.7%) were dominated proteins. In the B. multicinctus venom, 47 proteins (15 protein families) were identified, and three-finger toxins (3FTxs, 36.3%) and Kunitz-type Serine Protease Inhibitors (KSPIs, 32.8%) were major components. In addition, both venoms contained small amounts of other proteins, such as Snake Venom Serine Proteinases (SVSPs), Phospholipases A2 (PLA2s), Cysteine-Rich Secreted Proteins (CRISPs), 5'nucleotidases (5'NUCs), Phospholipases B (PLBs), Phosphodiesterases (PDEs), Phospholipase A2 Inhibitors (PLIs), Dipeptidyl Peptidases IV (DPP IVs), L-amino Acid Oxidases (LAAOs) and Angiotensin-Converting Enzymes (ACEs). Each venom also had its unique proteins, Nerve Growth Factors (NGFs) and Hyaluronidases (HYs) in D. acutus, and Cobra Venom Factors (CVFs) in B. multicinctus. In the peptidomics, 1543 and 250 peptides were identified in the venoms of D. acutus and B. multicinctus, respectively. Some peptides showed high similarity with neuropeptides, ACE inhibitory peptides, Bradykinin- Potentiating Peptides (BPPs), LAAOs and movement related peptides. Conclusion: Characterization of venom proteins and peptides of D. acutus and B. multicinctus will be helpful for the treatment of envenomation and drug discovery.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 514
Author(s):  
Choo Hock Tan ◽  
Praneetha Palasuberniam ◽  
Kae Yi Tan

Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40–60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2223
Author(s):  
Jacinthe Frangieh ◽  
Mohamad Rima ◽  
Ziad Fajloun ◽  
Daniel Henrion ◽  
Jean-Marc Sabatier ◽  
...  

Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation, cardioprotective activities—are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.


2020 ◽  
Vol 01 ◽  
Author(s):  
Maram Morjen ◽  
Zaineb Abdelkafi-Koubaa ◽  
Jed Jebali ◽  
Erij Messadi ◽  
Najet Srairi-Abid ◽  
...  

: The venoms of Tunisian wildlife snakes are complex mixtures containing proteins/peptides and non-protein molecules. Proteins and peptides are the most abundant compounds responsible for the biological effects of venoms. Snake venoms proteins have enzymatic or non-enzymatic activities, which are grouped into different families including C-type lectin proteins, disintegrins (long, medium and short disintegrins), Kunitz-type serine protease inhibitors, natriuretic-like peptides, vascular endothelial growth factor-related proteins, L-amino acid oxidases, phospholipases A2 and serine proteinases. With technological advancements, the toxic effects of venoms were turned into potential benefits for clinical diagnosis, basic research and development of new research tools and drugs of potential clinical use. Our research team has shown that Macrovipera lebetina and Cerastes cerastes venom components of Tunisian wildlife snakes had great potential for the development of new drugs for the treatment of cancer, angiogenesis disorders or cardiovascular diseases. This review is an overview on snake venom proteins from Macrovipera lebetina and Cerastes cerastes and their biochemical, pharmacological and molecular characterization and their importance as protein resources with therapeutic potential.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Choo Tan ◽  
Kae Tan ◽  
Tzu Ng ◽  
Evan Quah ◽  
Ahmad Ismail ◽  
...  

Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron’s Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected to nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic profiling. Snake venom metalloproteinases (SVMP) dominated the venom proteome by 48.42% of total venom proteins, with a characteristic distribution of P-III: P-II classes in a ratio of 2:1, while P-I class was undetected. Snaclecs constituted the second most venomous protein family (19.43%), followed by snake venom serine proteases (SVSP, 14.27%), phospholipases A2 (5.40%), disintegrins (5.26%) and minor proteins including cysteine-rich secretory proteins, L-amino acid oxidases, phosphodiesterases, 5′-nucleotidases. The venomic profile correlates with local (painful progressive edema) and systemic (hemorrhage, coagulopathy, thrombocytopenia) manifestation of T. nebularis envenoming. As specific antivenom is unavailable for T. nebularis, the hetero-specific Thai Green Pit viper Monovalent Antivenom (GPVAV) was examined for immunological cross-reactivity. GPVAV exhibited good immunoreactivity to T. nebularis venom and the antivenom effectively cross-neutralized the hemotoxic and lethal effects of T. nebularis (lethality neutralizing potency = 1.6 mg venom per mL antivenom). The findings supported GPVAV use in treating T. nebularis envenoming.


2013 ◽  
Vol 10 (1) ◽  
pp. 10-28 ◽  
Author(s):  
Ramar Samy ◽  
Ponnampalam Gopalakrishnakone ◽  
Seetharama Satyanarayanajois ◽  
Bradley Stiles ◽  
Vincent Chow

1981 ◽  
Vol 45 (01) ◽  
pp. 082-085 ◽  
Author(s):  
Eleonora Condrea ◽  
Chen-Chung Yang ◽  
Philip Rosenberg

SummaryThe anticoagulant effects and the simultaneous plasma phospholipid hydrolysis induced by three purified phospholipases obtained from snake venoms, i.e., the basic, relatively toxic N. nigricollis, the neutral, relatively nontoxic H. haemachatus, and the acidic, relatively nontoxic N. n. atra, have been compared. The N. nigricollis phospholipase has a very strong anticoagulant effect at concentrations which induce relatively low levels of phospholipid hydrolysis in plasma. The H. haemachatus and N. n. atra phospholipases become anticoagulant only at high concentrations, and the associated phospholipid hydrolysis is also very high. It is concluded that, while all phospholipases are likely to inhibit coagulation if used in amounts sufficiently large to deplete plasma of phospholipids, strongly active phospholipases, such as N. nigricollis, interfere nonenzymatically with the clotting process before any appreciable phospholipid hydrolysis is reached.


2019 ◽  
Vol 74 (2) ◽  
pp. 407-419 ◽  
Author(s):  
Aleksandra Bocian ◽  
Konrad K. Hus

Abstract An increasing problem in the field of health protection is the emergence of drug-resistant and multi-drug-resistant bacterial strains. They cause a number of infections, including hospital infections, which currently available antibiotics are unable to fight. Therefore, many studies are devoted to the search for new therapeutic agents with bactericidal and bacteriostatic properties. One of the latest concepts is to search for this type of substances among toxins produced by venomous animals. In this approach, however, special attention is paid to snake venom because it contains molecules with antibacterial properties. Thorough investigations have shown that the phospholipases A2 (PLA2) and l-amino acids oxidases (LAAO), as well as fragments of these enzymes, are mainly responsible for the bactericidal properties of snake venoms. Some preliminary research studies also suggest that fragments of three-finger toxins (3FTx) are bactericidal. It has also been proven that some snakes produce antibacterial peptides (AMP) homologous to human defensins and cathelicidins. The presence of these proteins and peptides means that snake venoms continue to be an interesting material for researchers and can be perceived as a promising source of antibacterial agents.


Sign in / Sign up

Export Citation Format

Share Document